首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In animals including humans nitric oxide (NO) serves as a biological messenger both peripherally at neuroeffector junctions and in the central nervous system where it modulates neuronal activity. Evidence for the involvement of NO in homeostatic control is accumulating also for temperature regulation in homeotherms. In the periphery an auxiliary role in the vasomotor control of convective heat transfer to heat dissipating surfaces and modulation of thermoregulatory heat generation, especially in brown adipose tissue as the site of nonshivering thermogenesis, are discussed as NO actions. At the central level a thermolytic role of NO in thermoregulation as well as in fever is assumed, however, experimental data opposing this view suggest that topical specificity may be important. At the level of single neurons, the observed interrelationships between thermosensitivity and responsiveness to NO are still not consistent enough to reconcile these data with the effects of NO-donors and inhibitors of NO-synthase on temperature regulation.  相似文献   

2.
3.
In a recent work, we detected nitric oxide synthase (NO synthase) in the acrosome and tail of mouse and human spermatozoa by an immunofluorescence technique. Also, NO-synthase inhibitors added during sperm capacitation in vitro reduced the percentage of oocytes fertilized in vitro, suggesting a role for NO synthase in sperm function. Therefore, in the present study the effect of three NO-synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME), NG-nitro-D-arginine methyl ester (D-NAME) and L-NG-nitro-arginine (NO2-arg), and of a nitric oxide donor, spermine-NONOate, on the progesterone-induced acrosome reaction of mouse sperm was examined. NO-synthase inhibitors were added at 0, 60 or 90 min during capacitation; at 120 min, mouse epididymal spermatozoa were exposed to 15 microM progesterone for another 15 min. In another set of experiments, different concentrations of spermine-NONOate were added to capacitated spermatozoa for 15 min; in these experiments, progesterone was not included. NO2-arg and L-NAME blocked progesterone-induced exocytosis regardless of the time at which these inhibitors were added. Moreover, D-NAME did not inhibit exocytosis. In contrast, spermine-NONOate stimulated the acrosomal exocytosis in vitro directly. These results provide evidence that mouse sperm NO synthase participates in the progesterone-induced acrosome reaction in vitro and that nitric oxide induces this event.  相似文献   

4.
The in vitro activation of murine macrophages by horseradish peroxidase (HRP) induced nitric oxide production in a dose-dependent manner, and increased the induction of NO-synthase by LPS. Nitrite production after HRP stimulation was inhibited by NG-monomethyl-L-arginine (NMMA), a specific inhibitor of NO-synthase. Equivalent amounts of nitrite were obtained with native and heat-inactivated HRP. High concentrations of mannose inhibited nitric oxide production, while the HRP inhibitor 3-aminotyrosine did not. Glycosylated serum albumin derivatives also induced murine macrophage NOS, probably by an interaction between carbohydrates and their specific cell membrane receptors. The inability of HRP apoprotein to stimulate NO production, and the specific inhibition of HRP-mediated activation of macrophages by hemin suggests that the heme moiety of this enzyme is involved in NO-synthase induction.  相似文献   

5.
BACKGROUND: In the adult respiratory distress syndrome, nitric oxide (NO) inhalation improves oxygenation through reducing ventilation-perfusion mismatching, but detailed information on the pulmonary effects of NO inhalation in septic shock is scarce. The present study investigated the effects of inhaled NO on alveolar dead space (Vdalv) and venous admixture as well as on respiratory system compliance (Crs) and respiratory system resistance (Rrs) in a porcine model of septic shock. Protective effects of NO are discussed. METHODS: Thirteen anaesthetised and ventilated pigs were given an infusion of endotoxin for an observation time of 220 min to induce acute lung injury (ALI). In the NO-early group (n=6), an inhalation of 60 ppm NO was started simultaneously with the endotoxin infusion and continued for 190 min. In 7 control/NO-late animals, 60 ppm NO was administered for 30 min following 190 min of endotoxin infusion. Haemodynamics, single-breath CO2-, pressure-, and flow signals were recorded. RESULTS: Endotoxin induced haemoconcentration, pulmonary vasoconstriction, and a decrease in Crs, while venous admixture, Vdalv, and Rrs increased. In the NO-early group, the pulmonary vasoconstriction was attenuated, no increase in pulmonary venous admixture or in Vdalv was seen before cessation of NO, and the improvements in oxygenation outlasted the NO inhalation. In the control/NO-late group, the NO inhalation reversed the changes in dead space and venous admixture. NO had no effect on the changes in respiratory mechanics. CONCLUSION: In porcine ALI, 60 ppm NO diminishes pulmonary vasoconstriction and improves gas exchange by reducing pulmonary venous admixture and alveolar dead space, but does not prevent a fall in Crs. NO inhalation may help prevent long-lasting pulmonary failure.  相似文献   

6.
In vivo voltammetry was performed in rat brain cortex and in rat brain endothelial constitutive NO-synthase preparations. The use of a recent microcaptor detecting N-hydroxy- and N-nitroso-L-arginine permitted to find only the latest in biological preparations. The construction of a new membrane selective electrode for nitric oxide (NO) allowed to assert its absence in these preparations at micromolar level. Half-live of N-nitroso-L-arginine was 4 s in rat brain cortex and the washout curve of NO after over brain insufflation gave an half-life of 10.5 min; their diffusion coefficients in brain were 3.810(-5) for NO and 3.910(-6) cm2.s-1 for N-nitroso-L-arginine. These facts indicate that N-nitroso-L-arginine is degraded directly into nitrites and citrulline after its synthesis by endothelial NO-synthase.  相似文献   

7.
The nitric oxide (NO)-cGMP signaling system is thought to play important roles in the function of the olfactory system in both vertebrates and invertebrates. One way of studying the role of NO in the nervous system is to study the distribution and properties of NO synthase (NOS), as well as the soluble guanylyl cyclases (sGCs), which are the best characterized targets of NO. We study NOS and sGC in the relatively simple and well characterized insect olfactory system of the hawkmoth, Manduca sexta. We have cloned Manduca sexta nitric oxide synthase (MsNOS) and two sGCs (MsGCalpha1 and MsGCbeta1), characterized their basic biochemical properties, and studied their expression in the olfactory system. The sequences of the Manduca genes are highly similar to their mammalian homologs and show similar biochemical properties when expressed in COS-7 cells. In particular, we find that MsGC functions as an obligate heterodimer that is stimulated significantly by NO. We also find that MsNOS has a Ca2+-sensitive NO-producing activity similar to that of mammalian neuronal NOS. Northern and in situ hybridization analyses show that MsNOS and the MsGCs are expressed in a complementary pattern, with MsNOS expressed at high levels in the antennae and the MsGCs expressed at high levels in a subset of antennal lobe neurons. The expression patterns of these genes suggest that the NO-sGC signaling system may play a role in mediating communication between olfactory receptor neurons and projection neurons in the glomeruli of the antennal lobe.  相似文献   

8.
While a high rate of cell loss is tolerated and even required to model the developing nervous system, an increased rate of cell death in the adult nervous system underlies neurodegenerative disease. Evolutionarily conserved mechanisms involving proteases, Bcl-2-related proteins, p53, and mitochondrial factors participate in the modulation and execution of cell death. In addition, specific death mechanisms, based on specific neuronal characteristics such as excitability and the presence of specific channels or enzymes, have been unraveled in the brain. Particularly important for various human diseases are excessive nitric oxide (NO) production and excitotoxicity. These two pathological mechanisms are closely linked, since excitotoxic stimulation of neurons may trigger enhanced NO production and exposure of neurons to NO may trigger the release of excitotoxins. Depending on the experimental situation and cell type, excitotoxic neuronal death may either be apoptotic or necrotic.  相似文献   

9.
In the last few years, there has been an important increase in interest in nitric oxide (NO) as an intercellular messenger, and its putative role in numerous CNS functions is being continually updated. Arginine, the nitric oxide precursor, has been found in our laboratory to be released following stimulation of the white matter in the cerebellum and of sensory afferents in the thalamus. Since arginine is localized in glial cells while the nitric oxide synthesizing enzyme is localized in different cells (predominantly in neurons), these findings may represent a transfer of arginine from glia to neurons in order to supply the nitric oxide synthase with its substrate. The mechanism underlying this glial-neuronal interaction seems to involve the activation of excitatory amino acid receptors present on glial cells. Our results speak for an intense crosstalk between neurons and glia (activation of glial receptors by neurotransmitter released from neurons) and between glia and neurons (supply of the nitric precursor arginine from glia to neurons). The form in which NO is released from cells has been much debated. The chemical identity of the endothelial-derived relaxing factor in particular is still a matter of dispute, the major contender being NO. and a S-nitrosothiol compound. Based on the strong reactivity of NO for thiols and on the presence of cysteine and glutathione at the mM level intracellularly and microM level extracellularly, we have investigated whether S-nitrosothiols, i.e. S-nitrosoglutathione, may be the potential "package" form in which NO could be stored. We demonstrated, with HPLC coupled to mass spectrometry techniques, the presence of endogenous nitrosoglutathione in rat brain tissue. This packaging of NO in the form of nitrosothiols might serve to facilitate its transfer, prolong its life, and target its delivery to specific effectors. That could confer a specificity of action to the widely diffusable messenger NO, may determine the range of effectiveness of NO and mitigate its adverse cytotoxic effects.  相似文献   

10.
Cell and tissue concentrations of NO2- and NO3- are important indicators of nitric oxide synthase activity and crucial in the regulation of many metabolic functions, as well as in nonenzymatic nitric oxide release. We adapted the capillary electrophoresis technique to quantify NO2- and NO3- levels in single identified buccal neurons and ganglia in the opisthobranch mollusc Pleurobranchaea californica, a model system for the study of the chemistry of neuron function. Neurons were injected into a 75-microm separation capillary and the NO2- and NO3- were separated electrophoretically from other anions and detected by direct ultraviolet absorbance. The limits of detection for NO2- and NO3- were <200 fmol (<4 microM in the neurons under study). The NO2- and NO3- levels in individual neurons varied from 2 mM (NO2-) and 12 mM (NO3-) in neurons histochemically positive for NADPH-diaphorase activity down to undetectable levels in many NADPH-diaphorase-negative cells. These results affirm the correspondence of histochemical NADPH-diaphorase activity and nitric oxide synthase in molluscan neurons. NO2- was not detected in whole ganglion homogenates or in hemolymph, whereas hemolymph NO3- averaged 1.8 +/- 0.2 x 10(-3) M. Hemolymph NO3- in Pleurobranchaea was appreciably higher than values measured for the freshwater pulmonate Lymnaea stagnalis (3.2 +/- 0.2 x 10(-5) M) and for another opisthobranch, Aplysia californica (3.6 +/- 0.7 x 10(-4) M). Capillary electrophoresis methods provide utility and convenience for monitoring NO2-/NO3- levels in single cells and small amounts of tissue.  相似文献   

11.
Measurement of exhaled nitric oxide (NO) may allow noninvasive assessment of inflammatory disease in the lung. We determined immediate and day-to-day reproducibility of single-breath NO measurements at different points on the exhaled test, and whether levels recorded reflect levels of NO in the lower airways. Using a rapid chemiluminescence analyser, 55 healthy control subjects performed three sequential tests on each of two days. NO levels were compared at the level corresponding with: 1) the time the mouth pressure fell below 4 cmH2O (MP); 2) the plateau of end-exhaled CO2 (CO2); and 3) the NO plateau (NOp). NO levels were measured directly from the lower airways of 15 lung transplant recipients and compared with NO levels from a single-breath test performed in the same cohort. For measurements performed at MP, CO2 and NOp, the mean +/- SD differences between the two closest levels performed on the same day were 0.11+/-0.18, 0.095+/-0.16 and 0.094+/-0.13 parts per billion (ppb), respectively, and between days were 0.18+/-0.76, 0.19+/-0.78 and 0.17+/-0.8 ppb, respectively. End-expiratory levels recorded at the mouth from a single-breath test and in the lower airways were highly correlated (mouth versus trachea r2=0.95, p<0.0001, mouth versus bronchus r2=0.92, p<0.0001). Single-breath exhaled nitric oxide levels are a simple, reproducible and valid measure of nitric oxide production from the lower respiratory tract.  相似文献   

12.
Nitric oxide (NO) acts as a neuronal messenger which activates soluble guanylyl cyclase (SGC) in neighboring cells and produces a wide range of physiological effects in the central nervous system (CNS). Using immunocytochemical and histochemical stains, we have characterized the NO/SGC system in the rabbit retina and to a lesser extent, in monkey retina. Based on staining patterns observed with an antibody to nitric oxide synthase (NOS) type I and a histochemical marker for NADPH diaphorase, a metabolic intermediate required for NOS activity, three major classes of neurons appear to generate NO in the rabbit retina. These include two subclasses of sparsely distributed wide field amacrine cells, rod and cone photoreceptors, and a subpopulation of ganglion cells. Equivalent cell populations were labeled in monkey retina. An antibody to SGC (tested only in rabbit retina), labeled large arrays of cone photoreceptors in the outer nuclear layer, both amacrine and bipolar cells in the inner nuclear layer (INL), as well as populations of neurons in the ganglion cell layer. These data suggest that the ability to generate NO is restricted to relatively few neurons in the inner retina and to photoreceptor cells in the outer retina; while presumptive target cells, containing pools of SGC, are widespread and form contiguous fields across the inner and outer nuclear layers (ONL) as well as the ganglion cell layer.  相似文献   

13.
The glial-derived neurotrophic protein S100beta has been implicated in the development and maintenance of the nervous system. S100beta has also been postulated to play a role in mechanisms of neuropathology because of its specific localization and selective overexpression in Alzheimer's disease. However, the exact relationship between S100beta overexpression and neurodegeneration is unclear. Recent data have demonstrated that treatment of cultured rat astrocytes with high concentrations of S100beta results in a potent activation of inducible nitric oxide synthase (iNOS) and a subsequent generation of nitric oxide (NO), which can lead to astrocytic cell death. To investigate whether S100beta-induced NO release from astroctyes might influence neurons, we studied S100beta effects on neuroblastoma B104 cells or primary hippocampal neurons co-cultured with astrocytes. We found that S100beta treatment of astrocyte-neuron co-cultures resulted in neuronal cell death by both necrosis and apoptosis. Neuronal cell death induced by S100beta required the presence of astrocytes and depended on activation of iNOS. Cell death correlated with the levels of NO and was blocked by a specific NOS inhibitor. Our data support the idea that overexpression of S100beta may be an exacerbating factor in the neurodegeneration of Alzheimer's disease.  相似文献   

14.
15.
Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.  相似文献   

16.
The effects of ischemia and postischemic reperfusion on the functions of the heart and its mitochondria were studied with special attention to the effect of nitric oxide (NO) by treatment of rat hearts with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) or its noninhibitory isomer N(G)-nitro-D-arginine methyl ester (D-NAME). NO generated during reperfusion caused increase in coronary flow (CF), but had no effect on the left ventricular pressure (LVP) or heart rate (HR). The ATP level of the heart decreased during ischemia and was not completely restored by introduction of oxygen during reperfusion due to damage of complexes I and II of the respiratory chain of mitochondria by NO. Inhibition of the respiratory chain resulted in generation of hydrogen peroxide, and NO and NO-derived species generated after production of NO caused further damage of various proteins in mitochondria, such as complexes I and II of the respiratory chain and pyruvate dehydrogenase (PDH). These results suggested that NO generated on reperfusion was the primary cause of mitochondrial dysfunction by damage of complexes I and II of the respiratory chain, with consequent increase of CF in the heart.  相似文献   

17.
OBJECTIVES: Inhaled nitric oxide (NO) reduces pulmonary hypertension in acute respiratory failure. Soluble nitric oxide donors (NO/nucleophile adducts-NONOates) are less cumbersome to deliver and may offer clinical advantage compared with inhaled NO. The objective of this study was to examine the pulmonary and systemic hemodynamic effects of tracheal aerosolization of a new class of NONOates in a porcine model of experimentally induced pulmonary hypertension. DESIGN: Prospective, randomized, controlled study. SETTING: Research laboratory. SUBJECTS: Yorkshire pigs (n = 18), weighing 11.4 to 16.4 kg. INTERVENTIONS: In anesthetized, mechanically ventilated, instrumented pigs, steady-state pulmonary hypertension (SSPH) was induced using a thromboxane agonist (U46619). Control animals received tracheal aerosolization of saline (n = 6); EP/NO animals received tracheal aerosolization of ethylputreanine NONOate (EP/ NO, n = 6); and DMAEP/NO animals received aerosolized 2-(dimethylamino) ethylputreanine NONOate (DMAEP/NO, n = 6). MEASUREMENTS AND MAIN RESULTS: Mean pulmonary (MPAP) and mean systemic arterial pressures (MAP), atrial pressures, cardiac output, and arterial blood gases were measured following drug instillation. DMAEP/NO animals had significant reductions in pulmonary vascular resistance index (PVRI) and MPAP at all time points compared with SSPH and control animals (p < .05), while systemic vascular resistance index did not change. EP/NO animals had a significant reduction in PVRI and MPAP at some time points compared with SSPH and control animals. For both NONOate-treated animal groups, MAP and cardiac index did not change significantly compared with SSPH and control animals (p < .05). CONCLUSIONS: In this porcine model of pulmonary hypertension, intratracheal aerosolization of soluble NO donors results in sustained reduction of pulmonary hypertension without reducing systemic arterial pressure. Intermittent aerosolization of NONOates may be an alternative to continuously inhaled NO in the treatment of acute pulmonary hypertension.  相似文献   

18.
Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.  相似文献   

19.
Nitric oxide (NO) is produced by the enzyme nitric oxide synthase (NOS) and has been implicated in inter- and intracellular communication in the nervous system. The present study was undertaken to assess the effects of sodium nitroprusside (SNP) and hydroxylamine (HOA), NO donors, on a dopamine (DA)-induced K+ current in identified Aplysia neurons using voltage-clamp and pressure ejection techniques. Bath-applied SNP (10-25 microM) reduced the DA-induced K+ current without affecting the resting membrane conductance and holding current. The DA-induced K+ current also was inhibited by the focal application of 200 microM HOA to the neuron somata. The DA-induced K+ current suppressing effects of SNP and HOA are completely reversible. Pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a specific inhibitor of NO-stimulated guanylate cyclase, and hemoglobin (50 microM), a nitric oxide scavenger, decreased the SNP-induced inhibition of the DA-induced current. In contrast, intracellular injection of 1 mM guanosine 3',5'-cyclic monophosphate (cGMP) or bath-applied 3-isobutyl-1-methylxanthine (IBMX; 50 microM), a non-specific phosphodiesterase inhibitor, inhibited the DA-induced current, mimicking the effect of the NO donors. These results demonstrate that SNP and HOA inhibit the DA-induced K+ current and that the mechanism of NO inhibition of the DA-induced current involves cGMP-dependent protein kinase.  相似文献   

20.
The present study investigated the role of nitric oxide (NO) in epileptogenesis and whether this role correlated with ionotropic glutamate receptor (IGR). Using a self-constructed NO-sensitive microelectrode (SNM), we observed the effect of nitric oxide synthase (NOS) inhibitors, NMDA and non-NMDA selective antagonists on penicillin(PEN)-treated hippocampal slices by simultaneously recording evoked field potentials and nitric oxide release from CA1 pyramidal neurons. 7-nitroindazole (7-NI),Nomega-nitro-L-arginine (L-NNA) and DL-2-amino-phospho-novaleric acid (APV), but not 6,7-dinitroquinoxaline-2,3 (1h,4h)-dione(DNQX), depressed NO release and partly reversed PEN's epileptogenetic effect, while APV + 7-NI + L-NNA did not display a further inhibitory effect. These findings suggest both NOS inhibitor and NMDA antagonist involve as anticonvulsant factors in epileptogenesis, providing direct evidence for NO release in response to NMDA receptor activation. The anticonvulsant effect of NMDA antagonist may ascribe to its action on NO release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号