首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The culture of opine-producing transgenic Lotus plants induces the increase in the rhizosphere of bacterial communities that are able to utilize these molecules as sole carbon source. We used transgenic Lotus plants producing two opines, namely mannopine and nopaline, to characterize the microbial communities directly influenced by the modification of root exudation. We showed that opine-utilizers represent a large community in the rhizosphere of opine-producing transgenic Lotus. This community is composed of at least 12 different bacterial species, one third of which are able to utilize the opine mannopine and two thirds the opine nopaline. Opine utilizers are diverse, belonging to the Gram-positive and -negative bacteria. We described two novel mannopine-utilizing species, Rhizobium and Duganella spp., and five novel nopaline-utilizing species, Duganella, Afipia, Phyllobacterium, Arthrobacter, and Bosea spp. Although opine utilizers mostly belong to the -Proteobacteria, Rhizobiaceae family, there is little overlap between the populations able to utilize each of the two opines produced by the plants. Noticeably, in the rhizosphere of transgenic Lotus, only the opine mannopine favors the growth of Agrobacterium tumefaciens, the bacterium from which opines have been characterized. The diversity of opine utilizers from the rhizosphere of Lotus plants is greater than that observed from any other environment. Therefore, transgenic plants with engineered exudation constitute an excellent tool to isolate and characterize specific microbial populations.  相似文献   

2.
Ecology and biodiversity studies of Agrobacterium spp. require tools such as selective media and DNA probes. Tellurite was tested as a selective agent and a supplement of previously described media for agrobacteria. The known biodiversity within the genus was taken into account when the selectivity of K2TeO3 was analyzed and its potential for isolating Agrobacterium spp. directly from soil was evaluated. A K2TeO3 concentration of 60 ppm was found to favor the growth of agrobacteria and restrict the development of other bacteria. Morphotypic analyses were used to define agrobacterial colony types, which were readily distinguished from other colonies. The typical agrobacterial morphotype allowed direct determination of the densities of agrobacterial populations from various environments on K2TeO3-amended medium. The bona fide agrobacterium colonies growing on media amended with K2TeO3 were confirmed to be Agrobacterium colonies by using 16S ribosomal DNA (rDNA) probes. Specific 16S rDNA probes were designed for Agrobacterium biovar 1 and related species (Agrobacterium rubi and Agrobacterium fici) and for Agrobacterium biovar 2. Specific pathogenic probes from different Ti plasmid regions were used to determine the pathogenic status of agrobacterial colonies. Various morphotype colonies from bulk soil suspensions were characterized by colony blot hybridization with 16S rDNA and pathogenic probes. All the Agrobacterium-like colonies obtained from soil suspensions on amended media were found to be bona fide agrobacteria. Direct colony counting of agrobacterial populations could be done. We found 103 to 104 agrobacteria · g of dry soil−1 in a silt loam bulk soil cultivated with maize. All of the strains isolated were nonpathogenic bona fide Agrobacterium biovar 1 strains.  相似文献   

3.
Short- and long-term persistence of pathogenic (i.e., tumor forming) agrobacteria in soil was investigated in six nursery plots with a history of high crown gall incidence. No pathogenic Agrobacterium strains were isolated in soil samples taken in fall and winter in any plots, but such strains were isolated from both bulk soils and weed rhizospheres (over 0.5 × 105 pathogenic CFU/g of bulk soil or rhizosphere) in three out of six plots in spring and summer. PCR amplifications of a vir sequence from DNA extracted from soil confirmed the presence of Ti plasmids in summer and their absence in fall and winter. The results indicate that strains that harbor a Ti plasmid had an unforeseen positive fitness versus Ti plasmid-free strains in soil and rhizosphere in spring and summer in spite of the apparent absence of tumor, and hence of opines. The gain of fitness occurred during a bloom of all cultivable agrobacteria observed only in conducive soils. An evolution of the pathogenic population was recorded during a 4-year period in one particularly conducive soil. In 1990, the pathogenic population in this soil consisted of only biovar 1 strains harboring both octopine- and nopaline-type Ti plasmids. In 1994, it consisted of only nopaline-type Ti plasmids equally distributed among biovar 1 and 2 strains. These results suggest that nopaline-type Ti plasmids conferred a better survival ability than octopine-type Ti plasmids to biovar 2 agrobacteria under the present field conditions.  相似文献   

4.
Microorganisms utilizing an opine as the sole carbon source were recovered from crown gall tumors, soil, and surface-disinfected potato tubers. The effect of the opines octopine, nopaline, succinamopine, and mannopine as selective substrates was compared with that of the auxin indoleacetic acid. Selection on octopine and indoleacetic acid favored the fluorescent pseudomonads, whereas mannopine allowed the frequent recovery of agrobacteria. Coryneforms which utilized succinamopine or mannopine were detected in soil, but not in tumors. Fungi growing on succinamopine or mannopine and a mannopine-utilizing Pseudomonas putida were isolated from tumor and soil, respectively.  相似文献   

5.
Specificity of Octopine Uptake by Rhizobium and Pseudomonas Strains   总被引:6,自引:2,他引:4       下载免费PDF全文
The octopine-utilizing strain Agrobacterium tumefaciens B6S3 and three nonagrobacteria which had the capacity to utilize this opine were compared for octopine uptake. The characteristics of uptake by Rhizobium meliloti A3 and strain B6S3 were similar. In both bacteria, uptake activity was inducible by octopine and by the related opine octopinic acid, and competition assays showed that these two opine substrates were accepted by the same uptake system with an equivalent affinity. Cells of Pseudomonas putida 203 accumulated octopine against a concentration gradient, and this activity was induced specifically by octopine. While strain 203 did not utilize octopinic acid, a spontaneous mutant with a combined capacity for octopine and octopinic acid utilization was obtained. Both opines induced octopine uptake by this mutant, but octopinic acid was not a substrate for the induced system. Thus, the Pseudomonas uptake system exhibited a different specificity for octopine than the corresponding Agrobacterium system. The nonfluorescent pseudomonad GU187j, which utilized the three related opines octopine, octopinic acid, and nopaline, was constitutive for octopine uptake. Strain GU187j possessed a system which accepted these three opines, but not arginine or ornithine, with a similar affinity.  相似文献   

6.
European larch (Larix decidua Mill.) seedlings were inoculatedwith a number of Agrobacterium strains to screen susceptibilityto infection by agrobacteria. Nine of fourteen Agrobacteriumstrains tested were virulent on this conifer species. The attachmentof virulent Agrobacterium to larch seedling tissues was examinedusing scanning electron microscopy. Electron micrographs showedthe attachment specificity of virulent Agrobacterium to larchcells at wound sites in a manner similar to that described forcells of susceptible dicotyledonous angiosperms, indicatinga host-parasite relationship between oncogenic Agrobacteriumspp. and young seedlings of European larch. These unique electronmicrographs provide the first opportunity to document the compatibleinteractions of Agrobacterium and a conifer at the cellularlevel. Further, the evaluation of tumour formation frequencysuggested that the interactions between Agrobacterium and Europeanlarch were affected by wound site, position of inoculation,age of plant tissues, and time of co-culture. Successful infectionof Agrobacterium resulted in genetic transformation of hostcells. Agrobacterium-mediated DNA transfer and expression of bacterialgenes in larch tissues were confirmed by both Southern blotanalysis and opine assay with the transformed tissues. Key words: Agrobacterium, Larix decidua, cellular interaction, transformation, DNA transfer, scanning electron microscopy  相似文献   

7.
Summary The oncogenic plasmids of Agrobacterium, the Ti-plasmids, carry genes that enable their bacterial host to catabolize opines. Opines are unusual amino acid derivatives that are only produced in crown gall tumours incited by oncogenic strains of Agrobacterium. The 2 opines, octopine and nopaline, are degraded by Agrobacterium strains carrying the octopine or the nopoline Ti-plasmid, respectively, to arginine and pyruvic acid, and to arginine and -ketoglutaric acid. In this paper it is shown that the Ti-plasmids carry gene(s) involved in the utilisation of arginine as a carbon source. Strains harbouring wild type octopine or nopaline Ti-plasmids in the chromosomal context of strain C58C1 do not grow on arginine as a carbon source. However, they are able to grow on arginine provided that they are induced, or constitutive for opine catabolism. The features of ornithine utilisation are identical. The gene(s) involved in arginine and ornithine utilization in C58C1 (pTi-oct) or C58C1 (pTi-nop) are under the control of the regulator gene that controls octopine or nopaline catabolism. A tentative pathway of octopine utilization is proposed, in which at least two steps are Ti-plasmid coded, and probably belong to the same operon: 1-scission of octopine into arginine and pyruvic acid 2-transformation of an arginine derivative (GSA?) to glutamic acid.Arginine utilization as a carbon source is therefore a new function of the Ti-plasmid. As this function is not inducible by arginine but by opines, it provides a method for selecting regulatory mutants of opine catabolism in the genetic background of strain C58.  相似文献   

8.
Soil samples collected from a fallow field which had not been cultivated for 5 years harbored a population of Agrobacterium spp. estimated at 3 × 107 CFU/g. Characterization of 72 strains selected from four different isolation media showed the presence of biovar 1 (56%) and bv. 2 (44%) strains. Pathogenicity assays on five different test plants revealed a high proportion (33%) of tumorigenic strains in the resident population. All tumorigenic strains belonged to bv. 1. Differentiation of the strains by restriction fragment length polymorphism analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cellular proteins, and utilization patterns of 95 carbon substrates (Biolog GN microplate) revealed a diversified bv. 1 population, composed of five distinct chromosomal backgrounds (chr A, C, D, E, and F), and a homogeneous bv. 2 population (chr B). chr A, B, C, and D were detected at similar levels throughout the study site. According to opine metabolism, pathogenicity, and agrocin sensitivity, chr A strains carried a nopaline Ti plasmid (pTi), whereas chr C strains had an octopine pTi. In addition, four of six nontumorigenic bv. 1 strains (two chr D, one chr E, and one chr F) had distinct and unusual opine catabolism patterns. chr B (bv. 2) strains were nonpathogenic and catabolized nopaline. Although agrocin sensitivity is a pTi-borne trait, 14 chr B strains were sensitive to agrocin 84, apparently harboring a defective nopaline pTi similar to pAtK84b. The other two chr B strains were agrocin resistant. The present analysis of chromosomal and plasmid phenotypes suggests that in this Agrobacterium soil population, there is a preferential association between the resident plasmids and their bacterial host.  相似文献   

9.
《Journal of bacteriology》2009,191(8):2501-2511
The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.  相似文献   

10.
11.
Biovar 1 of the genus Agrobacterium consists of at least nine genomic species that have not yet received accepted species names. However, rapid identification of these organisms in various biotopes is needed to elucidate crown gall epidemiology, as well as Agrobacterium ecology. For this purpose, the AFLP methodology provides rapid and unambiguous determination of the genomic species status of agrobacteria, as confirmed by additional DNA-DNA hybridizations. The AFLP method has been proven to be reliable and to eliminate the need for DNA-DNA hybridization. In addition, AFLP fragments common to all members of the three major genomic species of agrobacteria, genomic species G1 (reference strain, strain TT111), G4 (reference strain, strain B6, the type strain of Agrobacterium tumefaciens), and G8 (reference strain, strain C58), have been identified, and these fragments facilitate analysis and show the applicability of the method. The maximal infraspecies current genome mispairing (CGM) value found for the biovar 1 taxon is 10.8%, while the smallest CGM value found for pairs of genomic species is 15.2%. This emphasizes the gap in the distribution of genome divergence values upon which the genomic species definition is based. The three main genomic species of agrobacteria in biovar 1 displayed high infraspecies current genome mispairing values (9 to 9.7%). The common fragments of a genomic species are thus likely “species-specific” markers tagging the core genomes of the species.  相似文献   

12.
Bacteria were isolated from soil and crown gall tumors by selection in minimal medium with an opine, such as succinamopine or mannopine, as the sole carbon source. The isolates were characterized for the pattern of opine utilization and identified. They were classified as mannityl opine or imino diacid utilizers and exhibited specificity of utilization similar to that described previously for Agrobacterium species. A minority of isolates were gram negative and were identified as Agrobacterium or Pseudomonas species; most were gram positive and belonged to the coryneform group. These results indicate that any specific effect of opines on the ecology of Agrobacterium tumefaciens is modulated by activities of other types of soil- and plant-associated bacteria.  相似文献   

13.
Opine synthesis in wild-type plant tissue   总被引:8,自引:3,他引:5       下载免费PDF全文
Opine production is associated with crown gall tissue, a neoplastic growth caused by infection of dicotyledonous plants with Agrobacterium tumefaciens. Recent publications have claimed that tissues of certain monocotyledonous plants can also be infected by Agrobacterium. Following infection, a part of the Agrobacterium Ti plasmid, T-DNA, is integrated into the chromosome of the infected plant. T-DNA, which codes for opine-synthesizing enzymes, is now used to add foreign genes to plants. A number of laboratories have used opine production in plant tissue, often after arginine feeding or preincubation as evidence for plant transformation by T-DNA vectors. In this report we provide microbiological, chromatographic, spectroscopic and chemical evidence indicating that opines can be formed in normal callus and plant tissue as a result of arginine metabolism. Therefore, researchers studying T-DNA should be aware of the capability of plant tissue to metabolize arginine to opines. Opine production following infection with T-DNA may not always be sufficient evidence to indicate transformation by the Agrobacterium Ti plasmid.  相似文献   

14.
The diversity of opines from 43 naturally occurring crown gall tumors on several plant species was analyzed for the presence of agropine, chrysopine, iminodiacid, an unidentified leucinopine-like iminodiacid (IDA-B), mannopine, octopine, nopaline, DL- and LL-succinamopine, leucinopine and heliopine. Opine utilization patterns of agrobacteria and fluorescent pseudomonads resident in a tumor were then analyzed and compared for agreement with the opine isolated from that tumor. Nopaline was the most common opine found and was detected in tumors from cherry, blackberry, grape, and plum. Octopine was not found, although octopine-catabolizing bacteria were isolated from several tumors. A new, previously undescribed iminodiacid of the succinamopine-leucinopine type (provisionally designated IDA-B) was isolated from tumors of wild blackberry. Field tumors from apple, blueberry and grape yielded no detectable opines, even though opine-utilizing bacteria were present. Bacterial isolates from plum and cherry showed the best correspondence between the opine in tumors (nopaline) and the presence of bacteria that catabolized that opine. However, several unusual opine catabolic combinations were identified, including isolates that catabolized a variety of opines but were nonpathogenic. More variability was observed among isolates from field tumors on the remaining plant species. We isolated novel mannopine-nopaline type agrobacteria from field tumors of cherry, plum and blackberry that induced tumors containing either mannopine (plus agropine) or nopaline, but not both. Epidemiologically, the galled plants from an area were not of clonal origin (same Ti plasmid), indicating that the field tumors from a small area were incited by more than one type of Ti plasmid.  相似文献   

15.
Fungal Catabolism of Crown Gall Opines   总被引:3,自引:1,他引:2       下载免费PDF全文
This study was conducted to determine the capacities of 37 fungi to utilize various crown gall opines as their sole carbon and nitrogen source. One strain of Fusarium solani, two of Cylindrocarpon destructans, and six of Cylindrocarpon heteronema catabolized octopine, mannopine, octopinic acid, succinamopine, or a combination of these opines. One C. heteronema and one Fusarium dimerum strain grew only on succinamopine. None of the fungal isolates had the ability to grow on nopaline. The catabolism of opines by fungi was confirmed by the disappearance of the opine from the growth medium and by an increase in final mycelial dry weight with rising initial concentration of test substrate. This study thus shows that the catabolism of opines is not restricted to bacteria.  相似文献   

16.
The analysis of housekeeping recA gene sequences from 138 strains from 13 species or genomic species of Agrobacterium, nine being biovar 1 genomospecies, and the others Agrobacterium larrymoorei, Agrobacterium rubi, Agrobacterium sp. NCPPB 1650, and Agrobacterium vitis and one “former” Agrobacterium species, Rhizobium rhizogenes, led to the identification of 50 different recA alleles and to a clear delineation of the 14 species or genomospecies entirely consistent with that obtained by amplified fragment length polymorphism (AFLP) analysis. The relevance of a recA sequencing approach for epidemiological analyses was next assessed on agrobacterial Tunisian isolates. All Tunisian isolates were found to belong to the Agrobacterium tumefaciens/biovar 1 species complex by both biochemical tests and rrs sequencing. recA sequence analysis further permitted their unambiguous assignment to A. tumefaciens genomospecies G4, G6, G7, and G8 in total agreement with the results of an AFLP-based analysis. At subspecific level, several Tunisian recA alleles were novel, indicating the power and accuracy of recA-based typing for studies of Agrobacterium spp.  相似文献   

17.
Alfalfa tumour incited by Agrobacterium tumefaciens strain A281, carrying the tumour inducing plasmid pTi Bo542, synthesizes agropine and related mannityl opines. In addition it contains a small amount of leucinopine and large quantities of a new opine here identified as N-[(1S)-1-carboxy 2-carbamoylethyl]-(S)-glutamic acid. This new opine, L,L-succinamopine, is the Lglu epimer of the succinamopine previously isolated from tumours incited by pTi AT181 and related strains. The latter opine should now be designated D,L-succinamopine. This is the first example of the natural occurrence of epimeric opine structures.  相似文献   

18.
Short- and long-term persistence of pathogenic (i.e., tumor forming) agrobacteria in soil was investigated in six nursery plots with a history of high crown gall incidence. No pathogenic Agrobacterium strains were isolated in soil samples taken in fall and winter in any plots, but such strains were isolated from both bulk soils and weed rhizospheres (over 0.5 x 10(5) pathogenic CFU/g of bulk soil or rhizosphere) in three out of six plots in spring and summer. PCR amplifications of a vir sequence from DNA extracted from soil confirmed the presence of Ti plasmids in summer and their absence in fall and winter. The results indicate that strains that harbor a Ti plasmid had an unforeseen positive fitness versus Ti plasmid-free strains in soil and rhizosphere in spring and summer in spite of the apparent absence of tumor, and hence of opines. The gain of fitness occurred during a bloom of all cultivable agrobacteria observed only in conducive soils. An evolution of the pathogenic population was recorded during a 4-year period in one particularly conducive soil. In 1990, the pathogenic population in this soil consisted of only biovar 1 strains harboring both octopine- and nopaline-type Ti plasmids. In 1994, it consisted of only nopaline-type Ti plasmids equally distributed among biovar 1 and 2 strains. These results suggest that nopaline-type Ti plasmids conferred a better survival ability than octopine-type Ti plasmids to biovar 2 agrobacteria under the present field conditions.  相似文献   

19.
Several Agrobacterium strains isolated from the same forest nursery from 1982 to 1988 were compared by serological, biochemical, and DNA-DNA hybridization methods. Similarities among strains belonging to biovar 2 were observed by indirect immunofluorescence, whereas biovar 1 strains showed serological heterogeneity. Electrophoretic analysis of bacterial envelope-associated proteins showed that few bands appeared in the strains belonging to biovar 1, whereas many proteins appeared in the case of biovar 2 strains. Chromosomal DNA was analyzed with six random C58 chromosomal fragments. None of the six probes hybridized to the DNA of the two biovar 2 strains. One of the probes gave the same hybridization pattern with all biovar 1 strains, whereas the other probes yielded different patterns. The vir regions were closely related in the different pathogenic strains. The T-DNA and replication regions were less conserved and showed some variations among the strains.  相似文献   

20.
A total of eight strains of bacteria were isolated from the root nodule of Vicia faba on the selective media of Rhizobium. Two of these strains produced phenotypically distinct mucoid colonies (one slow growing and the other fast growing) and were examined using a polyphasic approach for taxonomic identification. The two strains (MTCC 7405 and MTCC 7406) turned out to be new strains of biovar 1 Agrobacterium rather than Rhizobium, as they showed growth on alkaline medium as well as on 2% NaCl and neither catabolized lactose as the carbon source nor oxidized Tween-80. The distinctness between the two strains was marked with respect to their growth on dextrose and the production of lysine dihydrolase, ornithine decarboxylase and DNA G + C content. 16S rDNA sequencing and their comparison with the 16S rDNA sequences of previously described agrobacteria as well as rhizobia strains confirmed the novelty of the two strains. Both of the strains clustered with strains of Agrobacterium tumefaciens in the 16S rDNA-based phylogenetic tree. The phenotypic and biochemical properties of the two strains differed from those of the recognized biovar of A. tumefaciens. It is proposed that the strains MTCC 7405 and MTCC 7406 be classified as novel biovar of the species A. tumefaciens (Type strains MTCC 7405 = DQ383275 and MTCC 7406 = DQ383276).
Bhupendra N. TiwaryEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号