首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
封面解读     
正本封面展现了大陡度透镜表面膜层折射率和膜层厚度均匀分布对激光光束质量的影响。大陡度透镜表面弯曲特性在膜层蒸发沉积过程中产生明显的遮挡效应,导致膜层的沉积角度、堆积密度和表面粗糙度发生变化,进而使得膜层厚度和折射率产生不均匀分布现象。采用宽角宽带膜系和温度-转速综合调控技术可解决这种膜层生长特性改变和均匀性难题,提升激光光束通过透镜后的光束质量。  相似文献   

2.
电子束蒸发沉积工艺条件对ZrO2薄膜性能的影响   总被引:6,自引:3,他引:3  
在电子束蒸发沉积制备ZrO2薄膜的过程中,采用石英晶体振荡法监控膜厚和沉积速率。用NKD7000分光光度计测量了ZrO2薄膜的折射率和膜厚,用原子力显微镜分别观测了不同工作气压和沉积速率下薄膜的表面形貌、均方根粗糙度。结果表明,随着工作气压的升高,膜层的结构变疏松,薄膜的折射率和均方根粗糙度都随之减小。随着沉积速率的增大,膜层的结构变致密,薄膜的折射率和均方根粗糙度都随之增大。并且从工具因子(TF)的角度得到了证实。实际镀膜过程中应该根据激光薄膜的应用需要选用合适的工艺条件,在允许的均方根粗糙度范围内提高膜层的结构致密性和折射率。  相似文献   

3.
经典短波通膜堆(0.5LH0.5L)n会由于薄膜的折射率不均匀性而产生半波孔现象.在进行膜系结构设计时,通常将薄膜假定为均匀折射率材料,当薄膜的光学厚度为1/2中心波长时,薄膜可被视为虚设层.而在实际制备时,薄膜的折射率通常存在一定的不均匀性,薄膜的光学厚度与设计值不符,从而产生半波孔.对薄膜的基本周期结构进行了优化,优化后的膜系结构在半波处的光学导纳不再受折射率不均匀性的影响.在此基础上,设计并制备了倍频分离薄膜,有效消除了半波孔现象,理论和实验光谱曲线具有很好的一致性.  相似文献   

4.
End-Hall与APS离子源辅助沉积制备的薄膜特性   总被引:2,自引:1,他引:1  
利用离子束辅助沉积(IAD)技术制备了单层HfO2薄膜,离子源分别为End-Hall与APS离子源。采用Lambda900分光光度计、可变角光谱椭圆偏振仪(V-VASE)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、ZYGO干涉仪和激光量热计测试了薄膜的透射光谱、光学常数、晶体结构、表面形貌和吸收(1064nm)。实验结果表明,薄膜特性与辅助离子源及起始膜料有着密切的关系。End-Hall离子源辅助沉积制备的薄膜出现轻微的折射率不均匀性。两种离子源辅助沉积制备的薄膜折射率均较高,吸收损耗小,薄膜均为单斜晶相。不同离子源辅助沉积条件下,利用金属Hf为起始膜料制备的薄膜表面平整度较好,其均方根粗糙度和总积分散射均相对较小。与End-Hall离子源相比,APS离子源辅助沉积制备的薄膜吸收相对较小。  相似文献   

5.
热蒸发紫外LaF3薄膜光学常数的表征   总被引:1,自引:1,他引:0  
常艳贺  金春水  李春  靳京城 《中国激光》2012,39(8):807002-163
薄膜光学常数的精确测定对于设计和制备多层薄膜具有重要意义。在JGS1型熔融石英基底上,采用热蒸发沉积方法制备了不同厚度的LaF3单层薄膜样品,利用光度法来获取弱吸收薄膜和基底的光学常数,计算得到其在185~450nm范围内折射率n和消光系数k的色散曲线。实验结果表明,当膜层厚度较薄时,LaF3薄膜折射率表现出不均匀性现象。随着薄膜厚度的增加,薄膜折射率不均匀性减小。在求解过程中选用不均匀模型后,拟合结果与实际测试光谱曲线吻合得很好,提高了薄膜光学常数的计算精度。  相似文献   

6.
负色散镜的色散补偿性能对设计和制备的精度要求都非常高,折射率和薄膜物理厚度是其性能准确实现的必要参数.实验设计并镀制了Gires-Tournois(G-T)镜,结合电场强度分布及薄膜的群延迟色散(GDD)、扫描电镜的测量结果,从材料折射率、膜层厚度、敏感膜层的变化及界面粗糙度等主要因素对Gires-Tournois镜群延迟色散性能的影响进行了分析.研究表明:设计时采用的材料折射率要根据实际实验计算得到;群延迟色散量随着总的膜层厚度和腔的厚度增加而增加;电场强度的分布决定色散补偿能力及敏感膜层的位置,最薄的膜层不一定是最敏感的膜层,敏感膜层对沉积厚度控制精度要求非常高;薄膜的界面粗糙度和不均匀性也是误差产生的重要原因.  相似文献   

7.
常艳贺  金春水  李春  靳京城 《中国激光》2012,39(10):1007002-140
在不同的沉积温度下,用热蒸发方法在熔融石英(JGS1)上制备了LaF3单层薄膜。分别采用分光光度计测量了薄膜样品的透射率和反射率光谱,反演得出薄膜的折射率和消光系数;采用原子力显微镜(AFM)观察了样品的表面形貌,并通过表面粗糙度计算得出总积分散射损耗;采用X射线衍射仪(XRD)测试了薄膜的晶体结构,由衍射谱图拟合得到衍射峰的半峰全宽,进而计算出薄膜晶粒的平均尺寸。实验结果表明,随着沉积温度的升高,LaF3薄膜的结晶状况明显变好,晶粒尺寸逐渐变大,膜层变得更加致密,薄膜的光学常数和折射率不均匀性均呈线性变化。沉积温度的增加对薄膜表面粗糙度的影响不明显,散射损耗在光学损耗中所占比例较小,所以光学损耗的变化主要由吸收损耗引起。  相似文献   

8.
研究了氮化硅材料在触摸屏领域中的应用,利用等离子体化学气相沉积技术,在一定厚度的玻璃表面沉积不同厚度的氮化硅薄膜。通过理论分析和试验测试的方法得到了氮化硅膜层厚度和折射率对触摸屏透过率以及表面宏观颜色的影响。分析结果表明,氮化硅膜层折射率对触摸屏的平均透过率影响明显,而膜层厚度对触摸屏的平均透过率影响很小,但是膜层厚度的改变对触摸屏特定波长处透过率和膜层宏观颜色影响很明显。在实际生产中可以通过改变沉积条件获得合适折射率及厚度的氮化硅薄膜材料。  相似文献   

9.
美国沉积科学公司已实现球透镜工艺的突破。公司以往的球透镜涂膜法产生光滑非均匀单层增透涂层。利用公司专有的ISODyn低压化学蒸汽沉积技术,可在透镜整个表面形成均匀、坚固的多层增透膜。这意味着可用较小、更经济的球透镜替代一些昂贵的大型部件。该公司的ISOSphere球透镜直径300μm~3mm,且有广泛的折射率,可根据光学器件、系统的特殊要求定做。由于透镜整个表面都有均匀涂层,光学仪器中就不必再将其特别取向,这是其它球透镜不具备的优点。该透镜的多层膜对1310nm或1550nm光的反射率低于0.25%,还有用于这两个波长及一些其它波长的…  相似文献   

10.
文章采用真空磁过滤电弧离子镀法在单晶Si(100)基片上成功制备了氮化铝(AlN)薄膜,并利用椭偏法对AlN膜进行了研究.根据沉积方法的特点,建立合适的膜系进行拟合,得到薄膜的折射率、消光系数和几何厚度;分析薄膜与基片之间的附着方式为简单附着,以及引起薄膜材料比块体材料折射率偏小的原因为:薄膜中含有空隙,Al/N不符合化学剂量比,薄膜表面形成了Al2O3钝化层.  相似文献   

11.
研究了不同的抛光方法(机械抛光、化学腐蚀及化学机械抛光)对硅基板上沉积的Pb_(1-x)Ge_xTe薄膜性能的影响.研究表明,经化学机械抛光(SiO_2胶体或Cr~+)的硅基板上所沉积的Pb_(1-x)Ge_xTe薄膜具有致密的结构及平直的界面,其沉积速率也比在化学腐蚀抛光表面的沉积速率大7%或18%(分别对应<111>和<100>晶向);薄膜具有明显高于化学腐蚀抛光基板沉积薄膜的折射率,且折射率随温度的降低而增加,而低温下折射率随波长的增加而增加;化学腐蚀抛光基板沉积薄膜的折射率的增加量明显大于化学机械抛光基板沉积薄膜的增加量;薄膜层经机械抛光后,其膜层结构、组分及其深度分布均未改变,但透射率增加,消光系数有所改善,折射率有所降低.  相似文献   

12.
反应磁控溅射制备SiOx渐变折射率红外梳状滤光片   总被引:1,自引:0,他引:1  
梳状滤光片是一种特殊的非均匀光学薄膜器件,其膜层折射率渐变分布结构使它与常规均匀光学薄膜相比具有更好的光学和机械性能.利用反应磁控溅射工艺,改变沉积SiOx(0≤x≤2)膜氧化程度,获得折射率从2.74逐渐变化到1.58(λ=1550 nm)的SiOx渐变折射率薄膜材料.通过调制膜层折射率振幅和引入膜层-外部介质折射率匹配层,成功地设计并制备了具有较好光学性能的SiOx渐变折射率红外梳状滤光片光学薄膜器件.使用单一的硅溅射靶材,通过改变氧化程度获得可变折射率材料的方法,为特殊光学薄膜器件的制备提供了一种经济实用的工艺路线.  相似文献   

13.
由于激光烧蚀靶材形成的等离子体羽辉呈高斯分布,导致沉积的大面积薄膜尤其是球面衬底上的薄膜极不均匀,严重限制了脉冲激光沉积法的应用。设计构建了旋转与变速摆动相结合的三维衬底机构,实现对半球面不同区域的连续沉积,保证了膜层的均匀性;建立膜厚分布的数学模型,模拟分析了运动参数对膜厚分布的影响;首次利用脉冲激光沉积技术制备出口径200 mm大尺寸半球面衬底上的均匀类金刚石膜,顶角80范围内膜厚不均匀性5%。脉冲激光沉积法在大口径半球面衬底上制备均匀类金刚石膜在空间观测等领域均具有巨大的应用前景。  相似文献   

14.
贺敏波  江厚满 《激光技术》2012,36(3):312-314
为了解决渐变折射率反射膜表面电场不为0,容易造成表面损伤的问题,提出了反射相移补偿方法,即不引入另外界面,在渐变折射率反射膜表面增加一层适当厚度的均匀膜,来降低渐变折射率反射膜的表面电场。结果表明,该方法确实降低了渐变折射率反射膜的表面电场;缺点是导致了渐变折射率反射膜中心波长的略微漂移,但该漂移相比于反射带宽而言可以忽略。该研究对制备高损伤阈值的渐变折射率反射膜具有参考价值。  相似文献   

15.
龙永福 《半导体学报》2011,32(4):043003-4
使用反射光谱、光致发光光谱和SEM研究了通过脉冲腐蚀形成的多孔硅薄膜的径向折射率、光学和物理厚度。详细分析了沿径向方向多孔硅薄膜的径向折射率(n)和光学厚度(nd)与腐蚀中心之间的关系。实验结果表明:随着远离腐蚀中心,SEM图像表明:多孔硅样品的物理厚度缓慢变小,在腐蚀边缘,在径向58μm距离里,薄膜的物理厚度从2.48μm减少到1.72μm;此外,径向折射率n增加,即多孔度变小,同时,反射光谱强度显示出干涉振荡减弱,这意味着多孔硅薄膜的均匀性和界面的平整度变坏。光致发光谱的包络线显示蓝移的趋势,显示纳米微粒的尺寸减少。多孔硅微腔被制备用来研究多孔硅膜的径向光学特性,结果证实:在腐蚀中心,多孔硅膜的均匀性比边缘好。  相似文献   

16.
首先使用工业型Direct-PECVD设备,采用SiH4和N2O制备了SiOx薄膜.针对Si太阳电池的应用,比较了SiOx薄膜在不同射频功率、气压、气体流量比和温度下的沉积特性,得出了最佳的沉积条件,这些沉积特性包括沉积速率、折射率和腐蚀速率.在该条件下沉积的SiOx膜均匀性良好、结构致密、沉积速率稳定,其性能满足了现阶段Si太阳电池对减反钝化层的光学和电学性能方面的要求.然后制备了SiOx-SiNx叠层减反钝化膜,并比较了SiO2与SiNx单层膜的减反和钝化效果,结果显示SiOx-SiNx叠层膜在不增加反射率的同时显著提高了Si片的钝化效果.  相似文献   

17.
为了满足深紫外光刻物镜对薄膜的要求,得到低损耗、高稳定性、长寿命的深紫外薄膜,需要选用适当的镀膜工艺方法。分别选取了离子束溅射法、热舟蒸发法和电子束蒸发法优化后的最佳工艺参量,在融石英基底上使用3种方法镀制了单层LaF3薄膜。首先,利用光度法得出3种方法镀制LaF3薄膜在185nm~800nm范围内的折射率n和消光系数k。然后,采用原子力显微镜对薄膜表面粗糙度进行了测量。最后,薄膜的微结构使用X射线衍射仪进行了分析。结果表明,离子束溅射镀制的LaF3薄膜折射率最高、表面粗糙度最低,但吸收较大;电子束蒸发法虽然吸收最小,但是折射率偏低且表面粗糙度较高;热舟蒸发法镀制的LaF3薄膜无论折射率、消光系数还是表面粗糙度都处于3种方法中间位置。综合各项指标,热舟蒸发法最适合于沉积深紫外LaF3薄膜。  相似文献   

18.
谢平 《红外》2010,31(9):14-17
在高真空中用热蒸发的方法沉积了碲锗铅Pb1-xGexTe薄膜。分析了基片表面状态(粗糙度、 晶向、温度)对膜层结构和红外光学特性的影响,发现光滑表面容易得到致密膜层和高红外折射率; 随着沉积温度的增加,膜层的短波吸收边(λc)往长波方向移动。  相似文献   

19.
离子束溅射氧化物薄膜的中红外特性   总被引:2,自引:0,他引:2  
李定  熊胜明 《中国激光》2015,42(1):107002
以离子束溅射沉积(IBSD)方法制备了Al2O3、Nb2O5单层膜,用红外可变角度光谱椭圆偏振仪(IR-VASE)测试了薄膜的光学常数。用原子力显微镜(AFM)测量了单层膜的表面形貌及表面粗糙度,计算了单个表面的总积分散射(TIS)。以Nb2O5和Al2O3为高低折射率材料设计并制备了2.7μm高反射膜。最后对单层膜进行了环境实验检测。结果表明,制备的薄膜在中红外波段具有高的折射率和低的消光系数,光滑的表面特性和极低的表面散射损耗;在2.7μm波段没有发现由于水吸收导致的消光系数的增大;制备的反射膜在2.7μm反射率达到了99.63%,接近于理论计算值。薄膜顺利通过了一系列环境实验,显示其优良的环境稳定性。  相似文献   

20.
斜角入射沉积TiO_2薄膜的光学特性和表面粗糙度   总被引:3,自引:0,他引:3  
采用电子束热蒸发技术在K9玻璃基底上以不同的沉积入射角沉积了单层TiO2薄膜,研究了不同入射沉积角沉积的TiO2薄膜的光学特性、填充密度和表面粗糙度,并比较了不同膜层厚度下薄膜表面粗糙度与入射沉积角之间的关系。研究结果表明,随着入射沉积角的增加,TiO2薄膜的透射率增加,透射峰值向短波移动,薄膜的填充密度从入射沉积角0°时的0.801降低到入射沉积角为75°时的0.341;薄膜的表面粗糙度随着入射沉积角的增加而增加,当入射沉积角为75°时,薄膜的表面粗糙度略高于基底的表面粗糙度。在沉积入射角不变时,随着膜层厚度的增加,膜层的表面粗糙度降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号