首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了复合金属氧化物(LDHO)对膨胀阻燃聚丙烯体系(PP/IFR)的协效作用。以层状复合氢氧化物(LDH)为前驱物通过焙烧法制备了2种LDHO,分别为镁铝LDHO(MgAl-LDHO)、镁铝铁LDHO(MgAlFe-LDHO),并通过X射线衍射对LDH和LDHO进行了表征,采用熔融共混法制备了PP/IFR/LDHO复合材料,通过极限氧指数(LOI)、UL94垂直燃烧、锥形量热等方法考察了复合材料的阻燃性能。结果表明,2种LDHO均可以提高PP/IFR体系的氧指数,并使最高热释放速率(PHRR)大幅度降低,其中MgAl-LDHO可使PHRR降低71%;热重分析表明,LDHO的加入提高了PP/IFR体系的分解温度及残炭在高温区的热稳定性,从而提高了体系热稳定性能。采用扫描电镜观察了残炭的形貌结构,发现添加LDHO后炭层更加致密、坚实,表明通过改善PP/IFR炭层的质量,LDHO起到了协效阻燃的作用。  相似文献   

2.
研究了含铁层状复合氢氧化物(LDH)对膨胀阻燃聚丙烯体系的抗滴落协效作用。采用水热法制备了镁铝LDH(MgAl-LDH)、镁铝铁LDH(MgAlFe-LDH)及镁铁LDH(MgFe-LDH),并采用XRD、FT-IR、SEM的方法对3种LDH进行了表征。采用熔融共混法制备了聚丙烯(PP)/膨胀阻燃剂(IFR)/LDH复合材料,通过极限氧指数、UL94垂直燃烧测试、热失重分析考察了阻燃复合材料的抗滴落性能、热稳定性,采用扫描电镜(SEM)表征了残炭的形貌结构。UL94垂直燃烧测试表明,含Fe3+的LDH,可以显著改善PP/IFR体系的抗滴落性能,添加0.8%(质量分数)的比例,达成UL94V-0(1.6mm)的阻燃剂添加量由23%降至21%。热失重分析表明,各LDH均可催化PP/IFR体系的热降解,同时促进其成炭,从而增强了其在高温区域的热稳定性;其中MgAlFeLDH对材料热稳定性的影响要优于MgFe-LDH,说明LDH中Fe3+有一合适的比例范围,过量的Fe3+则起到反作用。炭层SEM分析表明,各LDH均可改善PP/IFR体系的炭层质量,含Fe3+的LDH协效体系,炭层刚性增强,这可解释其抗滴落的原因。  相似文献   

3.
采用熔融共混法制备了聚丙烯(PP)/磷酸锆(OZrP)膨胀型阻燃材料,热重分析表明添加OZrP的阻燃体系成炭量有所增加。当PP基体中含有25%膨胀型阻燃剂(IFR)时,复合材料的氧指数为33,垂直燃烧测试为UL-94V-1级别,当保持添加剂总量不变时,添加3%OZrP到PP/IFR体系中,氧指数增加到37,垂直燃烧达到V-0级别。IFR与OZrP间存在协效作用,合适的添加比例有利于提高复合材料的阻燃性能。  相似文献   

4.
采用三氯氧磷、季戊四醇、对苯二胺和氨基硅油成功制备出新型磷氮硅一体化膨胀型阻燃剂(P-N-S-i IFR),通过极限氧指数、锥形燃烧和热失重测试对比研究了常规磷氮膨胀型阻燃剂(P-N-IFR)与P-N-S-i IFR对PP的阻燃效果。结果表明,含有P-N-IFR的PP阻燃体系的极限氧指数、平均热释放速率和残炭率分别为30.7、240 kW/m2和8.7%,含30%的P-N-S-i IFR的PP阻燃体系的3种参数分别为34.0、94kW/m2和15.2%,表明P-N-S-i IFR对PP阻燃和提高热稳定性的效果优于P-N-IFR对PP阻燃和增强热稳定性的效果。通过X射线衍射分析了含有两种阻燃剂的PP残炭结构,探讨了P-N-S-i IFR的阻燃机理。  相似文献   

5.
研究了六硅酸镁对膨胀阻燃聚丙烯的协同效应。采用熔融共混法制备了一系列不同配比的六硅酸镁(MS3)/膨胀型阻燃剂(IFR)/聚丙烯(PP)复合材料;通过氧指数、锥形量热测试、热失重分析评价了复合材料的燃烧性能和热稳定性,采用扫描电子显微镜表征了残炭微观结构。发现添加1%的六硅酸镁,膨胀阻燃体系的氧指数由38.1提高至42.0,增加了10.2%,热释放速率峰值和总释热量分别降低了72kW/m2和11 MJ/m2,700℃炭层残留量由6.3%提高至12.5%,膨胀炭层的致密性和完整性显著提高,残炭量显著增加,阻燃和热稳定性显著增强。  相似文献   

6.
分别以膨胀型阻燃剂(IFR)为主阻燃剂、有机蒙脱土(OMMT)为协效阻燃剂,对聚丙烯(PP)进行阻燃改性。采用UL-94垂直燃烧、极限氧指数(LOI)、热失重(TG)及拉伸等测试分别表征PP/IFR/OMMT复合材料的阻燃性能、热稳定性能及力学性能,研究了IFR和OMMT对PP阻燃性能、力学性能和热稳定性能的影响。通过红外线光谱仪分析了试样物质组成及扫描电子显微镜(SEM)观察了试样的外观形貌。结果表明:OMMT的加入,使PP/IFR复合材料体系的热稳定性和阻燃性能得到极大提高。当添加2%(质量分数)OMMT,PP/IFR/OMMT复合材料的LOI值从18%上升到23%,阻燃级别从NR提升到V-0,并且无熔滴滴落,同时复合材料的力学性能也较好,拉伸强度达到34.46MPa,断裂伸长率能达到107.19%。  相似文献   

7.
采用聚磷酸铵(APP)、三聚氰胺氰脲酸盐(MC)和聚苯醚(PPO)复配制备膨胀阻燃剂(IFR),与阻燃协效剂间苯二酚双(二苯基磷酸酯)(RDP)进行聚乙烯(PE)阻燃。借助氧指数、垂直燃烧测试,探讨IFR与阻燃协效剂RDP间的协效性,研究RDP不同添加量对IFR阻燃复合材料燃烧性能的影响,并对其力学性能进行测试。利用TG,DTG热分析技术对协效性进行验证。结果表明:RDP与IFR具有阻燃协效作用,RDP的协效性主要在热分解的第一阶段发挥作用,可催化APP提前分解,RDP的加入降低了热分解过程的热释放量,促进了多孔泡沫炭层的形成,并显著提高材料的残炭量;当RDP的添加量为5%(质量分数)时,氧指数(LOI)达到最大值31,并通过UL94V-0级。可见RDP与APP/MC/PPO阻燃剂复配可大幅提高PE的抗燃烧性能。  相似文献   

8.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

9.
利用三聚氰胺聚磷酸盐(MPP)和笼状季戊四醇磷酸酯(PEPA)的阻燃协效作用,复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)/稻壳(RH)复合材料进行阻燃。研究了MPP与PEPA复配比例对PP/RH复合材料阻燃性能的影响。采用垂直燃烧(UL-94)和极限氧指数(LOI)研究了阻燃PP/RH复合材料的阻燃性能,采用热重分析研究阻燃PP/RH复合材料的热分解过程,采用扫描电镜(SEM)观察阻燃PP/RH复合材料燃烧后炭层的形貌。结果表明:当MPP/PEPA总用量为20%(wt%,质量分数),PEPA和MPP的质量分数比为1∶4时,阻燃PP/RH复合材料的LOI值为29.7%,垂直燃烧UL-94通过V-0级,PP/RH复合材料的拉伸强度和弯曲强度分别增加了42.3%和53.6%。热重结果表明:MPP/PEPA复配能够延缓PP/RH体系中PP的分解,并提高了材料的成炭性,使PP/RH复合材料800℃下的残炭率由16.3%提高到了30.3%,残炭率升高了14.0%。通过SEM观察得到:两者复配使PP/RH复合材料燃烧后形成了致密均匀的多孔炭层,从而提高了PP/RH复合材料的阻燃性能。  相似文献   

10.
采用改性炭黑(M-CB)、膨胀石墨(EG)、聚磷酸铵(APP)三者复合与木粉及聚丙烯(PP)制备阻燃抗静电木塑复合材料。通过ZC-36型高阻计、JF-3型氧指数测定仪、CZF-3水平垂直燃烧测定仪、锥形量热仪、热重分析(TGA)测定复合材料的表面电阻率、氧指数及燃烧性能、阻燃性能、热失重行为。研究结果表明M-CB有良好的导电性能,可以使材料表面电阻率由约1014Ω降低到约108Ω;锥形量热及氧指数结果等表明M-CB/EG/APP三者复合阻燃体系的阻燃性能优于单一组分,同时TGA结果表明样品材料热稳定性能高于单一阻燃体系,残炭量显著提高,可以保护PP,使PP分解温度上升。  相似文献   

11.
以三(2-羟乙基)异氰脲酸酯与对苯二甲酸为原料,通过熔融聚合反应,在无溶剂条件下制备出异氰酸酯类化合物(TT1),采用核磁氢谱、红外光谱、元素分析对TT1结构进行表征,通过热重对TT1的热稳定性进行测定。将TT1与结晶II-型聚磷酸铵(APP-II)按照不同比例复配得到膨胀型阻燃剂(IFR),将IFR添加到聚丙烯(PP)中,得到PP/IFR阻燃复合物。通过氧指数、UL-94垂直燃烧、锥形量热测试对PP/IFR复合物的阻燃及燃烧性能进行评定,通过TG对其热稳定性进行研究,以扫描电镜观测阻燃复合物燃烧后生成的炭层微观结构。测试结果表明,TT1和APP存在协效作用,复配的膨胀阻燃剂IFR对PP具有优良的阻燃效果。当IFR添加量为25%(质量分数,下同)时,PP/IFR的氧指数达到32.3%,UL-94垂直燃烧达到V-0级(样条厚3.0mm),且阻燃复合材料燃烧中热释速率明显减缓。  相似文献   

12.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

13.
以环氧树脂为基料,聚磷酸铵(APP)/季戊四醇(PER)/三聚氰胺(MEL)为阻燃体系,镁铝水滑石(LDH)为阻燃抑烟协效剂制备了膨胀型阻燃涂料,重点研究了水滑石在膨胀阻燃涂料中的阻燃抑烟作用。通过大板燃烧法及烟密度分析了LDH对阻燃涂料的耐燃性能及烟密度的影响,采用热失重分析评估了涂料的热稳定性,运用扫描电镜(SEM)和红外光谱(FTIR)表征了涂料燃烧后炭层的微观结构及残炭成分组成。实验结果表明,LDH的加入明显提高了涂料的阻燃性能与抑烟性能。LDH添加量为50份时,涂料的耐燃时间延长到165 min,烟密度等级(SDR)降低了33%左右。  相似文献   

14.
以聚磷酸铵(APP)、季戊四醇(PER)组成的膨胀阻燃剂(IFR)为主阻燃剂,有机蒙脱土(OMMT)为协效阻燃剂,马来酸酐接枝聚烯烃弹性体(POE-g-MAH)为增韧剂,以聚酰胺6(PA6)为聚合物成炭剂,采用熔融共混法制备了PP/PA6/POE-g-MAH/IFR/OMMT阻燃复合材料,并研究了PA6对PP阻燃复合材料阻燃性和力学性能的影响。通过极限氧指数(LOI)、垂直燃烧、热重分析、扫描电子显微镜和力学性能测试等手段对PP阻燃复合材料进行了测试与表征。结果表明:成炭剂PA6的加入,可显著地提高PP阻燃复合材料的阻燃性能,当PA6含量为5%时,PP阻燃复合材料的LOI由原来不含PA6时的25.5%提高到了30.0%,垂直燃烧等级由原来的无等级提高到了UL-94 V-0级,且随着PA6含量的进一步增加,LOI在逐渐增大。但PA6的加入,会使PP阻燃复合材料的力学性能下降。  相似文献   

15.
以有机改性纳米SiO2和MgAl-SDBS-LDH为填料,采用熔融共混法制备PP/MgAl-SDBS-LDHs、PP/MgAl-SDBS-LDHs/SiO2复合材料。采用XRD、TGA、氧指数仪、水平垂直燃烧仪和锥形量热仪等方法,探讨纳米SiO2、MgAl-SDBS-LDHs在聚丙烯中的协同分散及协效阻燃性能。结果表明:相比PP/MgAl-SDBS-LDHs,PP/MgAl-SDBS-LDHs/SiO2复合材料体系的分散性得到明显改善。PP/5%MgAl-SDBS-LDHs/10%SiO2复合材料的初始分解温度较纯PP升高62℃,残留量达到11.18%。样品达到UL-94水平燃烧测试标准,极限氧指数(LOI)提高3.8,平均质量损失速率(AMLR)下降1.8g/(m2·s),生烟总量(TSP)增加4.7m2,热释放速率峰值(PHRR)下降41%。有机改性纳米SiO2改善了MgAl-SDBS-LDHs在聚丙烯中的分散性并提高了复合材料的阻燃性能。  相似文献   

16.
以七水硫酸镁和氢氧化钠为主要原料,利用水热法制备了碱式硫酸镁晶须,采用熔融共混法制备了聚丙烯/多聚磷酸铵/季戊四醇/碱式硫酸镁晶须复合材料。通过氧指数测试(LOI)、垂直燃烧测试(UL-94)、热失重分析评价了复合材料的阻燃性能和热稳定性,采用扫描电镜、能谱仪表征了残炭的形貌结构,发现碱式硫酸镁晶须对膨胀阻燃聚丙烯具有显著的协效作用。添加1%的碱式硫酸镁晶须,膨胀阻燃体系的LOI由29.90提高至38.39,提高了28.4%;UL-94等级从NR提高到V-0;残炭致密性显著增强,炭层表面C/P摩尔比增加,且出现元素Mg;弯曲强度从38.83 MPa增加至40.25MPa。  相似文献   

17.
将海泡石添加到聚磷酸铵(APP)/双季戊四醇(DPER)膨胀阻燃聚丙烯(PP/IFR)体系中,采用氧指数、热重分析及X射线光电子能谱法研究了体系的阻燃性能及作用机理。结果表明,添加海泡石后氧指数达到26.1%,协同指数达到1.1;海泡石可以提高膨胀炭层的热稳定性,增加高温时残炭量;海泡石与APP发生化学反应,形成Si-O-P键,可增加APP高温分解时的稳定性;同时,海泡石具有表面迁移现象,海泡石及热解的含硅类氧化物起到了阻隔的作用。  相似文献   

18.
以碳酸镍(NC)为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃聚丙烯(PP/IFR)。研究了NC用量对PP阻燃性能的影响,并分析了其阻燃协同作用机理。结果表明,添加少量的NC即可显著提高PP的阻燃性能;当NC添加量为3%时,阻燃PP的氧指数高达37.5%。TGA、FT-IR分析和体式显微镜、SEM观测结果表明,添加NC可以催化MPP/PEPA间的酯化反应,形成更多的交联网络结构,促进PP/IFR体系成炭,形成更致密的炭层,从而提高材料的阻燃性能。  相似文献   

19.
基于膨胀阻燃与协效阻燃相结合的技术制备了含协效剂的新型膨胀阻燃聚丙烯(PP)复合材料,其中的新型膨胀阻燃剂由硅凝胶包裹聚磷酸铵(OS-MCAPP)和三羟乙基异氰尿酸酯(THEIC)组成,协效剂为多孔磷酸镍(VSB-1)或磷酸镍纳米管(NiPO-NT)。结果表明,当VSB-1和NiPO-NT的添加量(质量分数)分别为4.0%和3.0%时复合材料的极限氧指数可达到最大值34.2,其最大热释放速率比不含协效剂时分别降低了40.7%和38.1%,表现出高效的阻燃协效性。同时,含有VSB-1和NiPO-NT阻燃PP复合材料的热稳定性显著提高,700℃时的残余质量比不含协效剂时分别提高了207%和239%。  相似文献   

20.
以改性天然碳水化合物结合碱式硫酸镁晶须(MHSH)混杂纤维为协效剂,结合膨胀阻燃剂(IFR)制备了阻燃型聚丁二酸丁二醇酯(PBS)木纤维复合材料。利用极限氧指数和垂直燃烧测试研究了复合材料的阻燃性能,并采用TG/DTA-MS对复合材料的热解过程、吸放热量和热解燃烧气体产物进行了分析。结果表明,5%的木薯渣作为碳源代替PBS提高了材料的阻燃性能。IFR/木薯渣/MHSH阻燃剂能够有效提高PBS的燃烧初始温度,并缩小燃烧温度范围。阻燃材料燃烧时,首先是IFR受热分解产生不可燃气体氨气在材料表层形成第一层阻燃保护层;其次,材料迅速燃烧产生的炭层形成第二层阻燃保护层;最后,在高温段MHSH分解形成第三层协效阻燃保护层。因此,最终形成了由外层不可燃气体氨气和内层天然碳水化合物MHSH膨胀炭层构成的气-固阻燃屏障,从而有效地提高了复合材料的阻燃性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号