首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
本文采用三维设计软件CATIA设计了不同结构车轮,利用有限元法计算出了不同结构车轮刚性值,分析了不同轮辐厚度和法兰厚度对车轮刚性的影响,研究结果指导车轮设计,改善车轮刚性,使得车轮刚性满足工程需求。  相似文献   

2.
本文采用三维设计软件CATIA设计了不同结构车轮,利用有限元法计算出了车轮固有频率,分析了不同轮辐厚度、轮辋厚度和法兰厚度对车轮固有频率的影响。研究结果指导产品设计,改善车轮固有频率,使的产品固有频率满足工程需求。  相似文献   

3.
为了提高汽车车轮轮辐外径面及外端面的加工精度、装夹效率、减轻劳动强度,适应汽车车轮的生产线向自动化、柔性化方向发展需要,优化设计了一种配合立式车床加工汽车车轮轮辐外径面及外端面的专用工装夹具。针对车轮轮辐外径面及外端面的制造工艺特点和优化设计目的,本次设计的优化之处主要有两点:一是工装夹具定位方面,该工装夹具利用轮辐中心孔面及平面定位,采用旋转拉杆夹紧的方式,避免了传统夹具基准不统一带来的轮辐外径跳动偏大且不稳定问题;二是机械结构方面,在车轮轮辐的每个散热孔附近区域加装一个浮动支撑油缸,以提高轮辐在加工过程中的刚度和强度,从而可以避免轮辐外径面失圆的问题。该专用工装夹具使用结果表明:结构和工艺优化设计合理,定位准确、可靠、装夹效率高,操作方便,装夹加工出来的轮辐外径面及外端面精度高,创造了良好的经济效益,并具有良好的通用性。  相似文献   

4.
弹性车轮刚度是车轮设计中的关键参数,其刚度大小直接影响车辆的运行安全性。为了解弹性车轮刚度特性,基于橡胶材料的Mooney-Rivlin模型,考虑橡胶元件的超弹性以及橡胶与金属元件的接触属性,建立了压剪复合型弹性车轮有限元模型,探究压装对弹性车轮刚度计算的影响,并通过改变V字型橡胶元件的结构参数和摩擦系数,研究弹性车轮刚度的变化规律,仿真结果显示:在对弹性车轮刚度进行仿真计算时,不可省略车轮的压装过程,否则会使刚度仿真数值严重失真;橡胶元件的结构参数和摩擦系数会对弹性车轮刚度产生较大影响,其中径向刚度对参数的变化更为敏感,橡胶厚度增加,车轮的径向和轴向刚度随之降低;橡胶角度增加,车轮的径向刚度增加,轴向刚度减小;摩擦系数增加,车轮的径向和轴向刚度均随之增加。  相似文献   

5.
为深入研究机械弹性车轮(MEW)的结构参数对汽车侧翻稳定性的具体影响,利用刷子理论模型建立了MEW稳态侧偏简化理论模型,利用理论、试验以及数值仿真等方法,分析了结构参数(包括几何参数和材料参数)对MEW侧偏特性的具体影响。以改进的载荷转移率作为侧翻稳定性的评价指标建立了匹配MEW的整车非线性3-DOF侧翻预测模型,研究了车轮侧偏力学特性对侧翻稳定性的具体影响规律。结果表明:铰链组结构参数对侧偏特性影响较小,适当增大弹性环分布高度、减小輮轮断面高宽比和初始剪切模量可以增大车轮侧偏刚度和侧向力峰值,进而提高匹配机械弹性车轮汽车的侧翻稳定性。  相似文献   

6.
电动轮铰接车原地转向工况对整车转向系统要求较高,是整车设计必须考核的工况,但较少涉及三维实体车辆原地转向仿真分析。根据电动轮铰接车结构特点,基于ADAMS搭建其动态运动模型;基于AMESim搭建全液压转向系统模型,联立整车模型和转向系统模型搭建联合仿真模型;通过驱动转向油缸使铰接车达到最大铰接角,实现铰接车原地转向过程仿真分析。仿真得到铰接车前后车体质心及铰点的运动轨迹,各个轮胎所受侧向力、纵向力及垂直力随铰接角的变化曲线,转向油缸中活塞杆的受力和铰接体的受力。结果可知:前车体内外车轮所受纵向力的方向相反;外侧车轮仅前轮纵向力较大,后两轮的纵向力可忽略不计;对于侧向力而言,六轮受力都较为明显,且中间两轮与其它四轮在方向上是相反的,且在数值上明显大于另外四轮,这也是六轮铰接车不同于四轮车的一个显著特点;原地转向时内侧活塞杆的受力大于外侧。  相似文献   

7.
基于ABAQUS有限元仿真软件,对高速动车组轮对压装过程进行数值仿真,计算得到的压装力-压入距离曲线(压装曲线)与实验曲线较好地吻合,验证了轮对压装有限元模型的正确性。在此基础上,分析了压装过程中轮对等效应力的分布和变化特点,得到了等效应力极大值出现的时刻和位置;分析了轮对等效塑性应变的变化特点,发现塑性变形区集中在车轴引入段末端周围的小块区域中;计算了不同压装阶段下的车轮变形,得到了车轮轮毂孔、轮辐和轮辋的变形几何特征。文中建立的有限元模型为优化轮对压装工艺和改进轮对结构参数提供了理论依据。  相似文献   

8.
基于空间坐标转化矩阵的方法对扭转梁后悬架反向轮跳运动模型进行推导,分析初始车轮定位参数对侧倾转向特性的影响。重点对扭转梁后悬架侧向受力进行分析,推导出衬套的刚度及布置方位角与侧向力变形转向系数的关系,通过MATLAB的优化工具箱把衬套刚度及衬套的布置方位角作为设计参数,对扭转梁后悬架随动转向特性进行优化设计。  相似文献   

9.
应用ANSYS软件对某型轿车钢制车轮轮辐螺母座刚度计算,求得车轮轮辐综合应力场及最大塑性变形位移,然后应用ANSYS进行优化。结果表明:采用有限元优化方法能够快速有效地获得轮辐螺母座的最佳结构,为轮辐设计提供新方法和思路。  相似文献   

10.
压剪复合型弹性车轮因其可调配径向和轴向刚度而广泛应用在实际列车运行过程中,目前不同截面形状结构的弹性车轮,尚未出台压剪复合型弹性车轮的设计标准。研究弹性车轮型腔形状对弹性车轮三向刚度的影响,为弹性车轮结构设计提供参考。以某有轨电车弹性车轮为原型,分别用截面形状结构为无凹槽、凹槽半径为R2.5 mm、凹槽半径为R5 mm的弹性车轮进行有限元刚度仿真实验。研究表明,在橡胶件参数不变的情况下,径向刚度与轴向刚度随着凹槽半径的增大而增大,有凹槽比无凹槽的刚度值大;凹槽越深,扭转刚度越大;但凹槽过浅将无法提高扭转刚度,反会稍降。因此,适当增加弹性车轮金属件截面的凹槽能增大弹性车轮的三向刚度,且增加凹槽结构也满足强度要求。  相似文献   

11.
以轻型车QX1060铝合金车轮为研究对象,详细叙述了车轮的设计过程。首先确定了车轮零件的类型和相关基本参数,然后运用UG软件对车轮零件进行三维建模。在ANSYS软件中,利用92号单元建立其有限元模型,分别就车轮承受胎压载荷、径向载荷、周向载荷、侧向载荷的工况进行模拟计算,得出了不同工况下车轮的应力和变形的大小和分布。计算结果表明,对车轮的有限元仿真分析是实现其设计的有效手段。  相似文献   

12.
基于ANSYS有限元分析软件的PDS概率计算方法,利用ANSYS APDL语言建立了参数化的汽车轮毂模型,对轮毂进行动态的弯曲疲劳试验仿真,进而对轮辐参数进行灵敏度分析。研究表明,轮辐内侧中部控制点的轴向坐标对轮毂弯曲疲劳强度的灵敏度最大且影响显著,轮辐外侧靠近中心孔的控制点的径向坐标对轮毂弯曲疲劳强度的影响仅次之。该研究对轮辐的设计具有一定参考价值。  相似文献   

13.
建立了齿轮流量计的数学模型,得到其传递函数。为流量计的中心轮、径向轮、内齿轮选择4组不同材料。径向轮采用空转齿轮,其转动惯量为原来的1/2,得到了对应的8组系统伟动惯量。应月;MATLAB进行处理研究,得到了对应的Bode图和运算结果。结果表明:与增大泄漏系数、阻尼系数相比,减小转动惯量可以明显的提高流量计的频率响应。  相似文献   

14.
通过三维软件SolidWorks建模,并且运用ANSYS Workbench进行铝合金车轮弯曲疲劳性能的有限元分析,通过仿真得到弯曲疲劳寿命云图及安全系数云图,所得分析数据与实际试验数据相对比,证明有限元分析的可靠性,为铝合金车轮的开发设计提供了理论依据。  相似文献   

15.
以16x7J铝合金轮毂为研究对象,根据弯曲疲劳试验,运用ANSYS Workbench建立车轮有限元模型。通过对有限元计算结果的分析,得到应力和应变分布情况。通过寿命预测,轮辐厚度减少1 mm,其寿命仍可达到国家标准要求。研究表明:该方法可缩短设计周期,降低成本,减轻车轮重量,对工程应用有一定的实用价值。  相似文献   

16.
设计了一种十辐Y字型轮毂车轮并运用SolidWorks建立三维模型,分析并计算车轮的受力情况作为边界条件,将模型简化后导入ANSYS Workbench,利用CAE分析技术对轮毂的整体结构、强度等方面进行了研究。经过载荷计算和有限元分析发现轮辐根部的连接处是最容易出现疲劳的部位,其次是螺栓孔和中心孔由于在转动过程中经常受预紧力和弯矩也很容易出现疲劳。在改进轮毂结构时,可以在螺栓孔之间安置径向加强筋或者增加轮辐的厚度来提高轮毂的疲劳寿命,经分析验证了该设计方案的可行性。为后续的进一步优化改进及模态分析、疲劳分析提供参考。  相似文献   

17.
The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center(WTC) and sprung mass turn center(SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using Car Sim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.  相似文献   

18.
In the interest of improved automotive fuel economy, one solution is reducing vehicle weight. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a “design software” tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The most effective time to optimize an automotive body panel is early in its development. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.  相似文献   

19.
Increasing frame torsional stiffness of off-road vehicle will lead to the decrease of body torsional deformation, but the increase of torsional loads of flame and suspension system and the decrease of wheel adhesive weight. In severe case, a certain wheel will be out of contact with road surface. Appropriate matching of body, flame and suspension torsional stiffnesses is a difficult problem for off-road vehicle design. In this paper, these theoretically analytic models of the entire vehicle, body, frame and suspension torsional stiffness are constructed based on the geometry and mechanism of a light off-road vehicle's body, frame and suspension. The body and frame torsional stiffnesses can be calculated by applying body CAE method, meanwhile the suspension's rolling angle stiffness can be obtained by the bench test of the suspension's elastic elements. Through fixing the entire vehicle, using sole timber to raise wheels to simulate the road impact on a certain wheel, the entire vehicle torsional stiffness can be calculated on the geometric relation and loads of testing. Finally some appropriate matching principles of the body, frame and suspension torsional stiffness are summarized according to the test and analysis results. The conclusion can reveal the significance of the suspension torsional stiffness on off-road vehicle's torsion-absorbing capability. The results could serve as a reference for the design of other off-road vehicles.  相似文献   

20.
铝合金车轮的热处理变形是不可避免的,变形会带来诸多不利因素。文章分析了铝合金车轮产生变形的原因,讲解了控制变形的积极意义,并根据“位移—力闭环控制系统”的数学模型,阐述了圆度校形的判定准则和具体的实施方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号