首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 640 毫秒
1.
通过氩弧熔覆技术在纯铜表面制备TiB2增强 Ni 基复合涂层,以改善其耐磨性能. 将钛粉、硼粉和镍粉在球磨机中充分混合,采用氩弧熔覆技术将纯铜表面预置粉末熔化制备出陶瓷颗粒增强镍基熔覆层. 采用X射线衍射仪、扫描电子显微镜、透射电子显微镜分析涂层的物相及涂层中陶瓷颗粒相的组成、分布及结构,利用显微硬度仪和摩擦磨损试验机测试涂层的显微硬度和耐磨性能. 结果表明,熔覆层物相主要包括γ(Ni, Cu)和TiB2;陶瓷颗粒增强相弥散分布于熔覆层中,其中颗粒相TiB2以六边形存在,熔覆层内部与基体界面处均无缺陷产生;熔覆涂层具有较高的显微硬度,当(Ti+B)质量分数为10%时,涂层显微硬度高达781.3 HV,与纯铜基体对比,熔覆层显微硬度提高约11.7倍;在相同磨损条件下,随(Ti+B)质量分数的增加,熔覆涂层的摩擦系数及磨损失重先减小后增大;氩弧熔覆原位自生TiB2陶瓷颗粒增强镍基熔覆层可显著提高纯铜表面的耐磨性能.  相似文献   

2.
TC4钛合金表面激光熔覆复合涂层的组织和耐磨性   总被引:1,自引:0,他引:1  
采用5 kW横流CO2激光器,在TC4钛合金表面熔覆TiC、TiB2与Ni的混合粉末,制备了无气孔、无裂纹、组织均匀致密的复合涂层。用SEM、EDS、XRD、显微硬度计以及立式万能摩擦磨损试验机分析了激光熔覆层的显微组织、成分和物相,测试了激光熔覆层横截面显微硬度,以及覆层耐磨性能。结果表明,激光熔覆复合涂层与基体呈冶金结合;熔覆层组织从表层到结合区呈现出由棒状、块状向树枝状、颗粒状转变的趋势,且主要由Ti、TiC、TiB、Ti2Ni、TiNi等相组成;熔覆层显微硬度最高可达863 HV0.2,为基体的2.5倍;熔覆层耐磨性能较TC4钛合金明显提高。  相似文献   

3.
佘红艳  屈威  杨柳  叶宏 《表面技术》2023,52(7):397-405
目的 采用激光熔覆技术在45钢表面制备原位生长的TiB2、TiC陶瓷相,以提高铁基涂层的耐磨性能。方法 利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)研究铁基复合涂层的相组织、显微组织。使用显微硬度计、磨损实验机等仪器进行显微硬度和耐磨性的测试。结果 在铁基粉末中添加Ti、B4C后,涂层原位生长出均匀分布的TiB2、TiC陶瓷相,其数量随着(Ti+B4C)添加量的增加而增多。经过扫描电镜结合EDS判定TiB2多呈矩形形貌,TiC呈球形或花瓣状。在原位生长过程中,TiB2优先形成,而TiC多依附在TiB2周围,以颗粒状存在。铁基复合涂层的显微硬度随着(Ti+B4C)添加量的增加逐级增加,质量分数为30%的(Ti+B4C)复合涂层的硬度最高(1 086HV0.2),比铁基涂层(611HV0.2)的硬度提高了约0.78倍。复合涂层的磨损性能得到明显改善,其中质量分数为...  相似文献   

4.
利用6 kW光纤激光器在Cr12MoV汽车模具钢表面激光熔覆含有Ti-Fe,B4C粉末的铁基合金粉,在汽车模具钢表面直接原位合成TiC+TiB2颗粒增强的铁基合金复合涂层.涂层与基体呈良好的冶金结合,涂层组织细小,结构致密,宏观质量较好. XRD分析结果表明,涂层组织由α-Fe,TiC,TiB2组成. TiC,TiB2相均匀分布于熔覆层中.由于TiC,TiB2硬质相的形成以及激光的快速凝固冷却获得的细晶组织,使得熔覆层的显微维氏硬度有了明显提高.在距离熔覆层表面1.2 mm处显微维氏硬度高达1000 HV,有利于促进熔覆层耐磨性的提高.  相似文献   

5.
目的提高截齿的耐磨性,延长其使用寿命。方法利用氩弧熔覆技术在35CrMnSi钢表面制备TiC增强镍基复合涂层,分析涂层的显微组织和物相组成,测试涂层在室温下的显微硬度和耐磨性,并分析磨损机制。结果氩弧熔覆涂层的显微组织致密均匀,涂层与基体呈冶金结合,主要由TiC,γ-Ni,M23C6等物相组成。TiC颗粒呈块状,尺寸为1~2μm,弥散分布在涂层中。涂层硬度和耐磨性与(Ti+C)含量有关,熔覆粉末中(Ti+C)质量分数为20%时,涂层最高硬度可达1190HV,耐磨性达到基体的7.5倍。结论熔覆涂层的显微硬度较基体有显著提高。在室温冲击载荷作用下,熔覆涂层的主要磨损机制为显微切削磨损,可大大提高基体材料的耐磨性能。  相似文献   

6.
利用氩弧熔覆技术在TC4合金表面制备出TiC增强的Ti基复合涂层。利用SEM、XRD和EDS分析了熔覆涂层的显微组织;利用显微硬度仪测试了复合涂层的显微硬度;利用摩擦磨损试验机测试了涂层在室温干滑动磨损条件下的耐磨性能。结果表明:氩弧熔覆涂层组织均匀致密,熔覆层与基体呈冶金结合,涂层中有大量的TiC树枝晶和条块状TiC颗粒;复合涂层明显改善了TC4合金的表面硬度,HV平均硬度可达9GPa;复合涂层室温干滑动磨损机制为磨粒磨损和轻微粘着磨损。  相似文献   

7.
以Al粉、Ti粉和C粉为原料,利用氩弧熔敷技术,在ZL104合金表面原位合成了TiC增强Al基复合材料层,借助扫描电镜、X射线衍射仪对复合涂层的组织进行了分析;利用显微硬度计、摩擦磨损试验机对复合涂层性能进行了测试。结果表明,氩弧熔敷过程中可以充分反应合成TiC颗粒;TiC颗粒呈球状分布,颗粒尺寸约为1.5μm,均弥散分布于熔敷层中。熔敷层与基体呈冶金结合,无裂纹、气孔等缺陷;复合涂层的显微硬度可达660 HV0.2,涂层耐磨性较基体提高近7倍。  相似文献   

8.
利用氩弧熔覆技术在TC4合金表面成功制备出TiC、TiB、TiB2增强Ti基复合涂层.利用SEM、XRD和EDS分析了熔覆涂层的显微组织;利用显微硬度仪测试了复合涂层的显微硬度;利用摩擦磨损试验机测试了涂层在室温干滑动磨损条件下的耐磨性能.结果表明:氩弧熔覆涂层组织均匀致密,熔覆层与基体呈冶金结合,TC4合金表面有颗粒状TiC、粗大棒状相TiB2、细小棒状相TiB生成;复合涂层明显改善了TC4合金的表面硬度,涂层的最高显微硬度可达1300 HV0.2;复合涂层在室温干滑动磨损试验条件下具有优异的耐磨性,磨损机制主要是魔力磨损,其耐磨性较TC4合金基体提高近10倍.  相似文献   

9.
采用氩弧熔覆的方法,以Ni60A自熔性合金粉末为粘结相,添加Ti粉、C粉和不同含量的稀土氧化物Y2O3,在16Mn钢基体上制备出TiC陶瓷颗粒增强金属基熔覆涂层. 运用XRD, SEM等手段对复合涂层的显微组织进行表征和分析,并对熔覆涂层的硬度及耐磨性进行了测试. 结果表明,适量添加Y2O3可以使涂层组织中枝晶的方向性减弱、同时细化涂层组织,使涂层组织更加均匀,涂层的硬度和耐磨性有显著提高. 添加2% Y2O3熔覆涂层的组织为最细,涂层具有较高的显微硬度和良好的耐磨性能.  相似文献   

10.
为改善Ti6Al4V合金的摩擦学性能,分别用纯Co、Co-2%Ti3SiC2、Co-5%Ti3SiC2、Co-8%Ti3SiC2混合粉末为原料,在Ti6Al4V合金表面激光熔覆制备复合涂层,利用X射线衍射仪(XRD)、扫描电镜(SEM)以及摩擦磨损试验机分析物相组成、显微组织结构以及在常温下的摩擦学性能。结果表明:所有复合涂层与基体结合良好,伴有少部分微孔。纯Co涂层的主要物相为γ-Co、CoTi、CoTi2等,而Co-Ti3SiC2涂层物相包括γ-Co、CoTi、CoTi2、TiC、Ti5Si3和残留的Ti3SiC2。涂层的硬度相对基体提高了1.90~2.15倍,而耐磨性能相应提高了3.02~5.44倍。  相似文献   

11.
以碳粉、钛粉、硼粉和铁粉末为原料,利用氩弧熔覆技术在16Mn钢基材表面成功制备出铁基增强相复合涂层,运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度,并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,复合涂层与基体界面无气孔、裂纹,呈冶金结合.复合涂层由TiB,TiC,Fe2Ti和α-Fe组成.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1000 MPa左右.常温干滑动磨损条件下,复合涂层具有优异的耐磨性.  相似文献   

12.
In the present study, a series of in situ TiB/Ti6Al4V composites were fabricated using selective laser melting. The formability, microstructure evolution and mechanical properties of the as-built samples added with different contents of TiB_2 were studied. It is found that the densification level is related to both the content of TiB_2 and laser energy density. The added TiB_2 reinforcement particle can spontaneously react with titanium and then form the TiB phase. The needle-like TiB phase tends to transform into dot-like particles with the decrease in energy density. Additionally, with the increase in TiB_2 content, the TiB phase is coarsened due to the increased nucleation rate and more reactions. The grain morphology is found to largely depend on the translational speed of solid–fluid interface determined by the temperature gradient and cooling rate. Also, the microhardness of the as-built TiB/Ti6Al4V composites is obviously improved. More interestingly, as the energy density increases, the microhardness of the as-built TiB/Ti6Al4V composites firstly increases and then decreases due to the synergy of grain size and different morphologies and distribution of TiB phases. The wear resistance of TiB/Ti6Al4V composites is far superior to that of Ti6Al4V alloy owing to the increased microhardness resulted from the uniform distribution of the hard TiB phase in the matrix.  相似文献   

13.
在重要航空材料TA15钛合金基材表面进行激光同轴送粉熔覆Ni60A-Ni包WC-TiB2-Y2O3混合粉末可生成非晶-纳米晶增强复合涂层.对涂层进行微观组织观察、显微硬度测试及室温干摩擦磨损试验.结果表明,涂层主要由γ-(Fe,Ni),WC,α-W2C,M12C,Ti-B化合物,Ti-Al金属间化合物,Mo,Zr与V元素的碳化物以及非晶相构成.整个涂层为非晶、纳米晶及其它晶化相共存.涂层较TA15钛合金表现出更好的耐磨损性,且涂层的主要磨损机制为磨粒磨损与粘着磨损.纳米晶颗粒的产生可使涂层磨损表面光滑,有利于摩擦系数与磨损量的降低.  相似文献   

14.
采用真空电弧熔炼技术制备了不同含量B4C的Ti6Al4V/B4C钛基复合材料,并采用光学显微镜、扫描电子显微镜、显微硬度计、静态压缩及拉伸测试等对其微观组织及力学性能进行了表征分析. 结果表明,电弧熔炼过程B4C与钛基体原位反应生成TiB,TiC及TiB2相,TiB呈现一维生长晶须状,TiC呈现颗粒状,在B4C质量分数为10%时生成块状TiB2,并可能会形成特殊的中空棱柱状结构Ti(BxCy)聚合物. 原位反应生成的TiB2可显著提高钛基复合材料的显微硬度. 当B4C质量分数为0.5%时,钛基复合材料原位反应生成的连续网状、均匀分布的TiB和TiC试样具有最优力学性能,试样最大抗压强度值达到1 990 MPa,最大压缩应变为35.5%,压缩性能超过熔炼钛合金,抗拉强度达到1 034 MPa,与熔炼钛合金材料相比提高近24%,但塑性有所降低,并随着B4C含量增加,抗拉强度逐渐下降,其断裂方式由韧性断裂转变为脆性断裂.  相似文献   

15.
钛合金表面激光熔覆高温自润滑耐磨复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
为了提高钛合金的摩擦学性能,采用激光熔覆技术在Ti-6Al-4V合金表面制备了γ-NiCrAlTi/TiC与γ-NiCrAlTi/TiC/CaF2复合涂层. 采用 X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)分析了涂层的物相和显微组织,在球-盘式高温摩擦磨损试验机上测试了不同温度下(室温,300 ℃,600 ℃)复合涂层的摩擦学性能. 结果表明,激光熔覆的复合涂层与基体呈冶金结合,γ-NiCrAlTi/TiC/CaF2复合涂层主要由"原位"生成的小块状,针状TiC颗粒及TiC树枝晶,γ-NiCrAlTi固溶体基体及弥散分布的球状CaF2颗粒组成. 由于硬质增强相 TiC与增韧相γ-NiCrAlTi的共同作用,γ-NiCrAlTi/TiC与γ-NiCrAlTi/TiC/CaF2复合涂层的磨损率在试验温度下都远低于Ti-6Al-4V基体;在600 ℃时,γ-NiCrAlTi/TiC/CaF2涂层的平均摩擦系数为0.21,相对于基体与γ-NiCrAlTi/TiC涂层分别降低了43%,50%,表现出良好的高温自润滑减摩性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号