首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
臭氧氧化处理炼油废水的生化处理出水   总被引:3,自引:1,他引:2  
采用臭氧氧化法处理经三级生化处理后生化性很差的炼油废水,研究了臭氧氧化法处理废水较佳的反应条件和反应规律。试验结果表明,在最佳的反应条件下,在进水COD的质量浓度为160mg/L时,经臭氧氧化处理后,废水的COD降低40%以上,BOD5与COD的质量比从0.13提高到0.3以上,废水满足进入生化系统进行进一步处理的水质要求。  相似文献   

2.
经过TLP-GXEM厌氧技术处理后的木薯酒精废液COD的质量浓度从22 000~35 000 mg/L降到2 000~3 000 mg/L,BOD5与COD的质量比约为0.6,生化性良好。再采用SBR工艺进行后续处理,在进水COD、BOD5的质量浓度分别为2 450、1 350 mg/L,色度为225倍时,出水COD、BOD5的质量浓度分别降为300~500、60 ̄90 mg/L,色度降为220倍左右。由于好氧出水的可生化性很差,选用活性炭吸附作为深度处理,可以使废水COD降为100 mg/L以下,活性炭对COD的去除率达到了85%,并且脱色效果明显,出水的色度为8倍左右,活性炭对色度去除率高达96.4%,两者均达到污水综合排放标准一级排放标准。  相似文献   

3.
臭氧-膜生物反应器深度处理印染废水的研究   总被引:4,自引:0,他引:4  
采用臭氧-膜生物反应器工艺深度处理达标排放印染废水。研究结果表明:在O3与COD的质量比为0.06,MBR停留时间为4h的条件下,经臭氧氧化后废水的可生化性大幅提升,BOD5与COD的质量比从0.19上升到0.42,废水COD的质量浓度从100mg/L降至25mg/L,色度从35倍降至15倍以下。直接运行费用0.45元/t。  相似文献   

4.
采用二维电催化氧化法对某工业废水COD、氨氮降解效果进行研究,分析了处理过程体系pH变化情况。研究结果表明,二维电催化氧化法对该工业废水的COD及氨氮具有明显的降解效果,处理3 h后COD从837.39 mg/L降为4.06 mg/L,对应去除率为99.43%;NH_3-N质量浓度从255.85 mg/L降为48.42 mg/L,对应去除率为81.11%,该过程符合零级动力学规律。二维电催化处理废水过程中,体系pH呈下降趋势。二维电催化处理废水过程中,废水中COD和氨氮质量浓度具有明显线性相关性,相关系数R~2为0.965。  相似文献   

5.
采用水解酸化-好氧氧化-砂滤串联工艺处理维生素B1制药废水,试验分别考察了pH、温度、滤速、溶解氧以及污泥负荷对整个工艺处理效果的影响.结果表明,原废水BOD/COD约为0.14,属难生物降解废水,经水解酸化处理后,出水BOD/COD可达0.43,可生化性大大提高.维持好氧氧化工段进水COD质量浓度和MLSS的COD负荷分别在3 000mg/L和0.4~0.5 kg/(kg·d)时,系统运行稳定性好,COD去除率均在80.0%以上.  相似文献   

6.
采用电渗析+铁碳+生化组合处理法对实际苯酚丙酮废水的处理效果和影响因素进行实验研究。结果表明,电渗析汲盐液浓度及膜堆电压对废水脱盐效率及能耗有显著影响,在汲盐液初始质量浓度为20 g/L Na_2SO_4、电压为14 V条件下,经210 min废水盐质量浓度从66.7 g/L降到8 g/L左右,脱盐率达到88%,具有较高的效率和经济性;脱盐后的废水经1.5 h铁炭微电解处理,BOD5/COD提高到0.31,最后生化处理出水COD约为130 mg/L,组合处理法的COD总去除率达到96.7%。  相似文献   

7.
共凝聚气浮-生物接触氧化处理屠宰废水的研究   总被引:2,自引:1,他引:1  
采用共凝聚气浮-生物接触氧化法处理屠宰废水,经过气浮处理,COD、SS、NH3-N的去除率分别达75%、90%、55%以上;在生化反应前增加气浮处理,大大降低了COD的有机负荷,提高了废水的可生化性。在生化阶段处理水是先经气浮处理的废水,COD质量浓度为500~600mg/L的情况下,生化出水COD平均质量浓度可降到70mg/L以下,达到GB8978-1996的一级排放标准。  相似文献   

8.
采用超重力-电催化-Fenton耦合法处理含酚废水,确定了适宜的工艺条件,与电催化-Fenton耦合法、超重力-电催化耦合法和电催化氧化法的去除效果进行了对比.结果表明,在电流密度200 A/m~2、初始p H值3、投加量FeSO_4×7H_2O 1.25 g/L和H_2O_2 40 mmol/L、超重力因子30、液体循环流量80 L/h、降解时间1 h的条件下,处理初始浓度100 mg/L的含酚废水,苯酚和化学需氧量(COD)去除率分别达99.56%和65.43%;废水处理后可生化系数(BOD/COD)由0.081提高到0.52,满足可生化处理要求;相近条件下本实验方法较其他3种方法苯酚去除率分别提高28.05%,84.13%和94.79%,并缩短了反应时间.  相似文献   

9.
针对苯甲酸生产过程中产生的高含量有机废水经甲苯萃取后,废水中仍然有质量浓度60~100 mg/L的苯甲酸和苯甲醇的情况,将此废水与生活污水合并调节,在生物滤床中连续进行生化处理,考察不同苯甲酸废水与生活污水体积比对出水水质的影响。结果表明,随着体积比的增加,BOD_5/COD生化指标稍有下降,当体积比小于3:2时,各项出水指标均达到较好水平,出水中苯甲酸和苯甲醇的质量浓度均小于1.5 mg/L,COD和BOD5分别为16.8 mg/L和13.0 mg/L,满足GB 18918-2002一级排放标准;NH4~+-N的处理效果(出水质量浓度小于30.0 mg/L)能达到二级排放标准。低苯甲酸含量废水通过一级厌氧和二级好氧生物滤床能得到很好的去除效果。  相似文献   

10.
介绍了唐钢汽车板冷轧过程中产生的高浓度含油乳化液废水、平整液废水、含碱废水工艺流程及设计参数。含油乳化液废水与平整液废水采用气浮-厌氧预处理,含碱废水采用序进气浮预处理,然后再合并采用缺氧-好氧MBR生化处理工艺流程。目前工程运行稳定,出水COD_(Cr)的质量浓度不超过30 mg/L,出水SS的质量浓度不超过20 mg/L,满足要求。  相似文献   

11.
多维电催化工艺处理草甘膦废水技术研究   总被引:4,自引:0,他引:4  
汤捷  贾少伟  李明 《现代农药》2010,9(3):19-22
草甘膦甘氨酸法生产过程中生成的废水量大、处理难度大。某草甘膦生产企业的草甘膦废水COD为45000 mg/L,废水中含有草甘膦、增甘磷、亚磷酸盐等难降解的大分子有机物,总磷含量为8000 mg/L,处理难度大大增加。通过多维电催化工艺处理该废水,COD得到了大幅下降,去除率平均为90%,总磷的去除率为90%。  相似文献   

12.
农药废水因毒性大、污染物浓度高、成分复杂,是工业废水治理的难题之一。电催化氧化作为一种"绿色技术",能将农药废水中大分子难降解的污染物氧化为低毒或稳定的小分子有机物,大幅降低废水的COD,为后续的生化处理创造条件。本文对电催化氧化技术进行了分类,并分别介绍了各技术处理农药废水污染物的原理及研究现状,同时展望了该技术今后的研究方向。  相似文献   

13.
催化氧化耦合高效生化工艺深度处理石化废水   总被引:1,自引:0,他引:1  
采用臭氧催化氧化耦合特定菌高效生化工艺(HENT)对某企业石化废水二级生化出水进行深度处理,主要去除COD和氨氮。废水经该工艺处理后,出水水质稳定,COD<120 mg/L,去除率平均为78%;出水氨氮<1 mg/L,去除率接近100%。试验结果表明,臭氧催化氧化耦合高效生化工艺可满足石化废水二级生化出水的深度处理要求。  相似文献   

14.
MBR与Fenton试剂工艺处理维生素C生产废水的可行性研究   总被引:1,自引:0,他引:1  
针对现有的维生素C生产废水处理工艺出水不能达标的问题,采用MBR和Fenton试剂对原有废水处理工艺进行提标改造。在MBR系统进水COD的质量浓度为350~650 mg/L,污泥质量浓度为8 000 mg/L,溶解氧的质量浓度为2~3 mg/L,停留时间为20 h时,出水COD的质量浓度可降至120~135 mg/L。再通过Fenton试剂氧化(硫酸亚铁和H2O2的投加量分别为120和80 mg/L),最终出水COD的质量浓度稳定在80 mg/L以下。对于维生素C生产废水处理工艺的选择,MBR-Fenton试剂氧化可作为推荐工艺。  相似文献   

15.
膜生物反应器处理己内酰胺生产废水   总被引:2,自引:1,他引:2  
为了更加有效地提高己内酰胺生产废水生化处理装置抗高浓度废水冲击能力,在原A/O处理系统中采用膜生物反应器技术对己内酰胺生产废水进行生化处理。工业应用结果表明:由于己内酰胺废水中氨氮含量较高,膜生物反应器进水pH值应该控制在8.5~9.5,以保证系统有效的硝化反应,去除氨氮;当进水COD、氨氮的质量浓度分别控制在2 000、200 mg/L以内时,出水COD、氨氮的质量浓度分别小于70、15 mg/L。处理后的水质能够达到国家一级排放标准。  相似文献   

16.
Fenton试剂法深度处理皮革废水生化出水的研究   总被引:6,自引:0,他引:6  
以加工生牛皮为主的皮革厂废水处理站生化出水为研究对象,研究了Fenton试剂对此废水的处理效果及影响因素。试验确定降解此类皮革废水生化出水的最佳条件为:pH值5.0,H2O2投加量600 mg/L,Fe2+的投加量500 mg/L,反应时间50 min。在此条件下,当进水COD的质量浓度为333 mg/L,色度为90倍时,COD和色度的去除率分别达到73.3%和98%,废水COD的质量浓度降至89 mg/L,色度降至5倍以下,达到《污水综合排放标准》(GB8978-1996)皮革废水一级标准。  相似文献   

17.
发制品企业废水处理工程设计实例   总被引:3,自引:0,他引:3  
针对发制品生产废水中含有较多不易生物降解的色度高,有机物、氨氮较高的特点,采用强化预处理和水解-接触氧化的治理工艺进行处理。在进水COD、BOD5、NH3-N的质量浓度分别为704~859、216~317、146~182mg/L和色度为2134~2608倍的条件下,经处理后出水COD、BOD5、NH3-N的质量浓度分别为85~126、24.1~25.9、19.0~22.6mg/L、色度为56~66倍,该工艺处理效果较好,运行稳定,出水达到《污水综合排放标准》(GB8978-1996)表4中的二级标准。  相似文献   

18.
萘胺废水具有CODCr浓度高、酚浓度高的特点。采用Fe-C微电解工艺对其进行预处理,CODCr去除率大于30%,酚去除率大于60%,m(BOD5):m(CODCr)从0.11提高0.32。预处理后的废水经二级生化处理,在混合废水CODCr、BOD5、挥发酚的质量浓度分别为1 548、496、59 mg/L时,处理后出水分别为112、15、0.2 mg/L,出水水质达到G8 8978-1996《污水综合排放标准》之二级标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号