首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
以废弃榛壳为前体,采用不同活化策略制备多孔炭,探究活化策略和活化温度对多孔炭挥发性有机化合物(VOCs)吸附性能的影响,以及多孔炭的结构、表面性质与VOCs吸附性能的构效关系。结果表明,H3PO4法制备的多孔炭介孔体积大,且炭结构缺陷较少,吸附位点较少; KOH法获得的微孔体积较大,孔径集中在0.5~0.7nm的微孔,不利于VOCs分子吸附位点的有效利用。H3PO4-KOH分步法在850℃下制备具有高比表面积,孔径集中在0.5~1nm的宽微介孔分布,且炭结构高度无序并含有丰富缺陷位的多孔炭,为VOCs吸附提供了充足的吸附位点并提高了吸附位点了利用率,相比于H3PO4与KOH活化法制备的多孔炭的VOCs饱和吸附量显著提升,特别是对于弱极性VOCs。另外,H3PO4-KOH分步法制备的多孔炭表面官能团含量较低,极性较低,对非极性VOCs的吸附量远大于极性VOCs。因此,H3PO4-KOH分步活化策略是制备具有高比表面积、高VOCs吸附性能多孔炭的最优策略与方案。  相似文献   

2.
郑超  康凯  周术元  宋华  白书培 《化工进展》2021,40(7):3803-3812
多孔炭材料具有较大的比表面积和发达的孔隙结构,是吸附有毒有害气体的关键材料,备受环境、化工、军事化学等领域的关注。多孔炭材料对有毒有害气体的吸附性能受气氛中水分子竞争吸附的影响,研究多孔炭材料对水分子的吸附行为是复杂环境下吸附分离有毒有害气体的基础,对改进多孔炭材料的表面官能团组成和孔结构具有重要的指导意义。基于此,本文综述了国内外关于水分子在多孔炭材料上吸附的机理、过程和影响因素,探讨了水分子作为示踪分子用于多孔炭材料结构表征的潜在可能,并对未来吸附理论的研究方向和指导新型吸附材料设计的应用前景进行展望。  相似文献   

3.
吸附法是治理挥发性有机物(VOCs)的重要技术之一。近年来,多孔材料用于VOCs的吸附处理受到了研究者的广泛关注。本文总结了多种多孔材料,如活性炭、生物炭、活性碳纤维、石墨烯、沸石分子筛、金属有机骨架材料、多孔有机聚合物和复合材料等在VOCs吸附领域的应用和研究进展,阐述了各类材料在VOCs吸附应用中存在的问题,探讨了其未来发展前景,总结了吸附剂失活的原因和再生的方法,为多孔材料在VOCs吸附领域的应用提供借鉴。  相似文献   

4.
针对大气中由挥发性有机化合物不可控释放引起的环境和健康问题,开发新的吸附技术和材料是重要的解决途径之一。通过热处理廉价、无毒、可再生的蟹壳废弃物,并通过KOH活化制备了可对VOCs高效吸附的蟹壳生物质炭。以炭壳为原料制备了碳化蟹壳(CS)和蟹壳活性炭(CSK),并采用SEM、BET、FT-IR、XRD对其进行了表征,系统考察了温度对VOCs(二甲苯和正己烷)的影响,分析结果表明,制备的蟹壳生物质炭是一种具有介孔结构的多孔材料,其比表面积高达2 098.15 m2/g,平均孔径约为1.98 nm,孔体积为1.16 cm3/g。最后,对制备的CSK-800进行了动态吸附实验,得到的二甲苯和正己烷的总吸附量分别为557.98、585.19 mg/g。吸附动力学研究结果表明,其吸附过程与准一级和Bangham模型拟合结果高度吻合,较好地诠释了蟹壳活性炭对VOCs吸附主要是以物理吸附为主的孔道扩散。  相似文献   

5.
分级多孔炭因其高比表面积、大孔容及分级孔结构,目前广泛应用于超级电容器、锂离子电池、催化及吸附等领域。废弃物在热解气化过程中残留的碳基材料则是制备分级多孔炭很好的前体。本文根据废弃物来源及自身特性间的差异,对生物质和非生物质废弃物作为原料制备的分级多孔炭的特性及应用进行了综述及总结。并对不同制备方法的优劣及适用对象进行了比较。对分级多孔炭在挥发性有机物(VOCs)吸附、CO2吸附捕集、染料吸附、抗生素以及酚类物质的吸附过程进行分析,总结出废弃物基多孔炭在孔径结构及表面杂原子掺杂情况下的优势能够增强这几类物质的吸附效果。结合已有文献,对废弃物基分级多孔炭的制备、孔径设计及表面官能团设计提出展望。  相似文献   

6.
巨正则系综蒙特卡罗法研究活性炭吸附   总被引:4,自引:0,他引:4  
近年来,巨正则系综蒙特卡罗计算机模拟在研究炭素材料,特别是活性炭的吸附特性以及炭材料的结构表征和新材料设计方面得到应用。对巨正则系综蒙特卡罗法,目前在活性炭吸附特征研究中所普遍采用的活性炭微孔模型和分子与原子之间相互作用的模型进行较为详细的介绍。同时还给出了作者有关活性炭吸附氮和甲烷的基本特性的研究结果。  相似文献   

7.
活性炭吸附挥发性有机物的影响因素研究进展   总被引:2,自引:1,他引:1  
从挥发性有机物(VOCs)的基本概念出发,介绍了其主要来源、危害及其污染控制技术,并在此基础上具体地介绍了活性炭吸附法。综述了影响活性炭吸附性能的的因素如活性炭的孔结构、表面化学结构、活化技术、VOCs的入口浓度、VOCs的物化性质、多组分VOCs吸附、吸附柱填充密度等。  相似文献   

8.
综述了目前多孔炭吸附剂在脱除噻吩类硫化物中的应用,分别介绍了多孔炭及改性多孔炭在吸附脱硫中的应用。重点介绍了改性多孔炭包括氧化改性及金属改性法的活性炭和介孔炭吸附脱硫研究,指出采用氧化一金属复合改性活性炭的方法可显著提高吸附脱硫能力。介孔炭由于具有较高的比表面积、较窄的孔径分布、极好的化学和热稳定性,用在吸附脱硫将可能成为未来的研究热点。  相似文献   

9.
N2吸附法是表征多孔材料孔结构的最常用的方法,具有操作简便、样品可回收的优点.N2吸附法测量结果通过不同的数学模型处理,获得微孔(<2 nm)和中大孔(2 nm~100 nm)数据.应用N2吸附法和扫描电镜对煤基活性炭进行了系统的表征研究,从理论上对BJH法进行了探讨,归纳出了四种典型活性炭的吸附等温线.结合N2吸附法的吸附-脱附数据及扫描电镜表征结果,对其孔结构特点进行全面分析.  相似文献   

10.
多孔炭材料经过含氮试剂的掺杂改性后,宏观及微观性能都发生显著变化,在具有高比表面积、优良的耐热、耐酸碱的同时,还具有独特的电子传导性和催化性能,使其具有更广阔的应用前景。通过含氮试剂对活性炭改性制备考察,运用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、元素分析、BET氮吸附法对活性炭改性前后氮含量、表面官能团和孔结构变化进行表征分析,研究结果显示三聚氰胺、二氰二胺改性效果优异其他改性试剂。  相似文献   

11.
以石墨片微元构建的多孔碳材料作为活性炭的结构模型,采用巨正则蒙特卡罗方法(GCMC)和分子动力学方法(MD),从分子层面研究甲烷和甲苯在活性炭中的吸附和扩散特性. 结果表明,石墨片微元大小对多孔碳材料吸附甲烷和甲苯有一定影响,37个碳环构成的多孔碳材料是最佳的吸附结构;甲烷气体在活性炭材料中扩散较快,甲苯在活性炭中扩散较慢,随碳环碳原子数增加,气体在多孔碳材料中的自扩散系数逐渐增大;引入基团会使最优密度向高密度方向偏移,用不同基团表面改性的吸附量顺序为羟基>氨基>羧基>未改性,基团引入会改善材料的孔结构,有利于吸附量的增加.  相似文献   

12.
廖正祝  田红 《洁净煤技术》2021,27(1):155-168
煤化工产生的挥发性有机物VOCs气体成分复杂且有毒有害,为了避免煤化工VOCs及其光化学产物对环境和人体健康产生危害,通过分析VOCs气体的排放控制及处理技术,指出煤化工VOCs吸附技术是可以控制VOCs排放、回收吸附材料及回收有价值VOCs的经济、有效的VOCs去除技术。通过分析煤化工VOCs吸附的物理与化学过程及其影响因素、解吸附的过程与方法,对常用的吸附材料的改性研究及发展进行了综述,通过对比不同吸附装置的结构、吸附特点及优缺点,将煤化工VOCs吸附技术与其他技术的组合实际工程应用进行了比较分析,并展望了吸附技术的未来研究方向。影响吸附过程的因素有吸附材料的结构特性、表面化学性质及亲疏性热稳定性等物理化学特性,被吸附物质VOCs的分子特性、吸附剂与吸附质之间的相互作用、不同吸附质之间的相互竞争、吸附环境等;物理吸附过程包括外表面传值吸附阶段、内部表面扩散阶段、不同孔径孔隙之间的平衡阶段;吸附剂微孔提供了主要的吸附位点,而中孔及大孔则增强了VOCs的扩散通道。吸附材料经过适当改性具有优异的VOCs吸附能力;采用H2O2浸渍法改性可提高活性炭纤维表面含氧官能团含量,吸附能力增强;采用具有强氧化性的浓硫酸等改性使活性炭表面具有含氧基团,增强活性炭对氮的吸附能力;用碱性氢氧化物改性的活性炭增加了比表面积,用酸改性可增加表面官能团,用KOH活化可获得更好的孔隙率。需要针对VOCs种类、浓度、流量及排放量等特性选择适合的吸附装置。吸附技术是控制煤化工VOCs排放和回收有价值VOCs再利用的经济、有效且具有前景的技术,可与其他技术组合处理VOCs气体,进行有利用价值VOCs气体的回收利用,实现VOCs废气排放达标。吸附技术未来研究重点是吸附材料改性(或定向改性)、新型改性方法及新型吸附材料研究、高效低成本吸附装置研究、多组分吸附质同时脱除研究,并提出了多组分VOCs吸附及解吸附的复合吸附装置研究思路。  相似文献   

13.
选用了7种不同物理化学特性的碳材料,分别为活性炭-1(比表面积1779m2/g)、活性炭-2(比表面积970m2/g)、多孔纳米炭-1(平均孔径14nm)、多孔纳米炭-2(平均孔径85nm)、多孔纳米炭-3(平均孔径4.7nm,掺氮)、多孔纳米炭-4(平均孔径4.1nm,不掺氮)和纳米碳纤维。在对比这7种不同的碳材料的物理化学特性与其脱硫性能的基础上,研究材料的物理化学特性、脱硫温度、反应空速等因素对碳材料吸附脱除SO2性能的影响。结果表明,碳材料吸附脱除SO2的性能受材料的比表面积、孔隙结构、表面官能团、脱硫温度和反应空速的综合影响。不同的碳材料中,材料的孔隙结构和表面官能团对材料的脱硫性能影响很大,以微孔结构为主的碳材料SO2去除率较高,以介孔结构为主的碳材料脱硫容量较高;随着脱硫温度升高,碳材料的吸附脱硫性能降低;随着反应空速降低,碳材料的吸附脱硫性能升高。本研究中,多孔纳米炭NCP-10的吸附脱除SO2性能最好,能在室温下保持100%的SO2去除率持续1h,且在室温下1h内累积的脱硫容量最高可达108mg(SO2)/g(材料)。  相似文献   

14.
核桃壳制备活性炭的电化学性能研究   总被引:1,自引:0,他引:1  
活性炭商业应用于超级电容器,由于其高比表面积,良好的热性能和导电性,良好的抗腐蚀性,稳定性高,成本低,因此在这个领域活性炭的研究作为电极材料一直是热门话题。以核桃壳为原料,采用ZnCl2活化法制备活性炭(AC),用氮气吸附法对活性炭的孔结构和表面官能团进行了分析。以活性炭为电极材料制备炭电极,利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能及其与活性炭材料结构的关系。  相似文献   

15.
本文对生物质多孔炭吸附CO2的研究进展进行了综述,介绍了不同的生物质作为前驱体制备的吸附材料,着重对生物质多孔炭材料的结构与性能的构效关系进行了分析,总结了影响CO2吸附的主要因素,并对生物质多孔炭材料目前存在的问题和发展方向进行了分析和展望。  相似文献   

16.
活性炭吸附法是目前使用最为广泛的处理VOCs的方法之一。本文综述了活性炭吸附挥发性有机气体的影响因素:活性炭的孔隙结构、活化方法、进口VOCs的浓度、有机气体的物化性质、混合VOCs以及温度、吸附剂填充密度、流量等,都是活性炭吸附挥发性有机气体的影响因素。  相似文献   

17.
多孔炭在电化学储能器件中具有不可或缺的作用。本文主要介绍了富氧多孔炭材料的物理化学特性、表面含氧官能团的种类及表征方法;总结了富氧多孔炭常见的合成方法并分析了各种方法的优缺点;以超级电容器和锂/钠离子电池为例,阐述了近年来富氧多孔炭材料在储能应用方面的研究进展,探讨了含氧官能团在储能过程中的作用机理;指出了富氧多孔炭应用于电极材料时高比容量与高导电性能相互制约的问题,提出理性设计多孔炭结构中含氧官能团的类型及数量,可以在保持多孔炭电化学稳定性的同时,为多孔炭提供丰富的氧化还原活性位,提高其与电解质的亲和性,从而提升储能器件的能量密度;并展望了含氧官能团原位表征技术的开发与材料先进结构组分的设计等富氧多孔炭储能电极的未来发展方向。  相似文献   

18.
刘德钱  解强  万超然  邓锋  黄小晴  翟笑迪 《化工进展》2019,38(12):5578-5586
采制11种典型水处理用商品活性炭样品,两两混合进行配炭,对配炭组分及配炭的碘值、亚甲蓝值、丹宁酸值和焦糖脱色率等吸附性能指标及孔结构特征进行了测试和表征。采用加权平均拟合、线性拟合及多项式拟合等方法,研究配炭吸附性能指标与配炭组分吸附性能指标间的量化关系,关联活性炭孔结构与吸附性能指标。结果表明:活性炭配炭的吸附性能指标可由配炭组分的吸附性能指标通过加权平均计算,相对误差<4%,且配炭的孔结构也具备加和性;活性炭碘值、亚甲蓝值、丹宁酸值和焦糖脱色率的大小分别取决于活性炭1.0~2.8nm、1.5~10nm、2.0~50nm和3.0~50nm孔隙的发达程度,与孔容积的线性相关系数介于0.91~0.94。  相似文献   

19.
以生物质柞木为原料,采用不同活化法制备具有不同结构特征的柞木基活性炭,利用N2吸附、FT-IR、XPS、XRD、Raman光谱等表征手段对活性炭的微结构特性进行解析,探究活化方式对活性炭微结构性能的影响;微结构与超级电容器性能的构效关系。研究表明: KOH和H3PO4-KOH法制备的活性炭微孔发达,炭结构表面缺陷位与杂原子丰富,在低电流密度下表现出更高的比电容;H3PO4-KOH法制备的活性炭具备更宽的微介孔分布与孔道连通性,使其具有更好的电容保持率;CO2、H3PO4和H3PO4-CO2法制备的活性炭介孔发达,微孔体积小,孔道连通性差,炭结构相对完整,裸露于炭结构表面的缺陷与杂原子相对较少,尽管电容保持率较高,但比电容较低。因此,高性能的超级电容器活性炭电极应具有发达的微孔结构、较宽的微介孔分布、通畅的微介孔连通结构,同时含有更多的裸露于炭结构表面的结构缺陷与杂原子基团,从而提高超级电容器的能量密度。  相似文献   

20.
利用柠条作为原材料,在350和600℃下进行热解制备生物炭,并对制备的柠条生物炭进行800℃水蒸气活化1 h处理得到柠条活性炭。使用热分析仪和傅里叶红外光谱仪分析了柠条活性炭的官能团组成以及炭化过程中的结构变化,探讨了热解机理。使用扫描电子显微镜和比表面及孔径分析仪观察和分析了活性炭的孔结构特征;采用碘吸附法研究了柠条活性炭的吸附性能。结果表明:柠条炭化过程中,半纤维素、纤维素和木质素在150~680℃较宽的温度范围内发生热解,并获得柠条生物炭。炭化的本质主要是打开长链醇羟基、烃基,获得结构简单的芳香族化合物。柠条在600℃炭化、800℃水蒸气活化后制备的活性炭保持了纤维组织的骨架结构,并具有大量的孔结构,以5 nm以下的孔结构为主,比表面积达到187 m2/g,碘吸附值可达221 mg/g,柠条是制备活性炭的理想材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号