首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行固溶时效处理,随后使用光学显微镜、扫描电镜、XRD衍射仪、拉伸试验以及冲击性能试验,分析固溶时效对合金中α′相和α″相的组织演变与力学性能的影响。结果表明,固溶处理后的微观组织中发生初生α相尺寸变小并趋于等轴化,尺寸较小的初生α相发生溶解并消失,其β转变组织变得不明显,经时效后的微观组织中析出大量αs相,β转变组织更加明显。经固溶处理后,组织均由α+α′+α″相构成,经时效处理后,组织由α相和β相构成。合金经固溶处理后,其抗拉强度为1336 MPa,屈服强度为1070 MPa,断后伸长率为6%,断面收缩率为22%,冲击吸收能量为16 J。经时效处理后,强度随时效温度升高而升高,塑性趋势与之相反,其冲击性能几乎没有变化。合金经固溶处理后的拉伸与冲击断口微观形貌均由韧窝构成,为典型的韧性断裂。经时效处理后,拉伸和冲击断口的微观形貌有明显的高低起伏,随着时效温度的升高,韧窝的尺寸和数量减少,并出现撕裂棱以及空洞,断裂类型有向脆性断裂转变的趋势,但仍以韧性断裂为主。  相似文献   

2.
对TC11钛合金进行固溶时效处理,通过光学显微镜、XRD以及冲击性能测试等,研究固溶时效处理后该合金微观组织与冲击性能的关系。结果表明:合金经955℃固溶处理后,组织由αp相与α″相构成,αp相形貌以等轴状和长条状为主,经1015℃固溶处理后,组织由α’相与α″相构成,α’相形貌呈细小针状,2组固溶条件下的合金再经时效处理后,组织中均出现βT,并析出αs相。合金的冲击韧性值在仅经955℃固溶处理后最大,其最大冲击韧性为22 J/cm2,经时效处理后,2组合金的冲击韧性值均随着时效温度升高而降低。当固溶温度为955℃时,断口形貌呈现韧性断裂特征,经时效处理后,断口形貌中出现二次裂纹。当固溶温度为1015℃时,断口形貌呈现脆性断裂特征,经时效处理后,断口形貌除二次裂纹外,有空洞出现。  相似文献   

3.
研究了Ti-1300合金经不同温度固溶处理和固溶+时效处理后的组织和性能。结果表明:Ti-1300合金在固溶处理后,随着固溶温度升高,合金的抗拉强度和屈服强度逐渐降低,断面收缩率先升高后降低,断后伸长率有所升高。Ti-1300合金在850℃固溶处理可获得最佳的综合性能。通过固溶和时效处理,Ti-1300合金硬度随着固溶温度的升高而增大。当固溶处理在相变点以下时,β相中时效析出次生αs相较粗大;而固溶处理在相变点以上时,β相中时效析出次生αs相较细小且均匀。  相似文献   

4.
对Ti-3.5Al-4.5Mo-6V-2Cr-1.5Sn-0.4Fe合金机械锻件进行了固溶和时效处理,研究了固溶温度、时效温度和时效时间对锻态合金显微组织的影响。结果表明,两相区固溶处理后进行时效处理,合金主要由初生α相、次生α相和β相组成,合金中初生α相在一定程度上可以限制β晶粒的长大,随时效温度的升高,次生α相逐渐粗化和长大;单相区固溶处理后进行时效处理,合金组织主要由次生α相和β相组成,次生α相的体积分数随时效温度的升高而降低,而α相的宽度逐渐增加。  相似文献   

5.
利用放电等离子烧结技术制备生物医用Ti-24Nb-4Zr-8Sn合金,研究固溶时效处理对合金显微组织和力学性能(强度、塑韧性及弹性模量)的影响。结果表明:合金经850℃固溶处理后主要由β相、少量初生α相及淬火马氏体α″相组成;在450℃时效处理后,合金基体β相内析出大量细小无规则的针状次生α相,随着时效时间从4 h延长到48 h,次生α相趋于定向析出,含量和尺寸逐渐增大;与烧结态相比,固溶时效处理后合金抗压强度和弹性模量增大,而塑韧性呈先提高后降低趋势;经优化后固溶时效处理制度为(850℃,1.5 h,WQ)+(450℃,4 h,FC),此时合金抗压强度、屈强比和弹性模量分别为1701 MPa、0.69 GPa和42.8 GPa。  相似文献   

6.
对Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)合金进行了不同工艺的固溶时效处理,研究了热处理后的组织演变规律与力学性能。结果表明:经不同温度固溶+540℃时效后,随着固溶温度的升高,初生α相板条变短变粗,体积分数减少,针状次生α相体积分数增加,Ti-35421合金的强度增加,塑韧性减小,拉伸断口表面韧窝数量减少、尺寸变小,逐渐出现微孔和空洞;经775℃固溶+不同温度时效后,随着时效温度的升高,针状次生α相变短变粗,次生α相间距增大,合金的强度减小,塑韧性增加,拉伸断口表面韧窝逐渐变大变深,微孔和空洞逐渐消失。当热处理工艺为775℃/1 h/AC+560℃/16 h/AC时,Ti-35421合金的抗拉强度为1125 MPa,屈服强度为1024 MPa,延伸率为5.5%,冲击吸收功为36.3 J,具有良好的强塑韧性匹配。  相似文献   

7.
研究了不同热处理制度(固溶时效,退火)对TA31合金微观组织和力学性能的影响。采用OM、TEM、SEM研究了其微观组织形貌,采用拉伸试验机测试了拉伸性能。结果表明:在相变点之下依次选取不同固溶温度(920、940、960、980℃)对TA31合金试样进行固溶+时效工艺处理,当固溶温度低于960℃时,时效后的强度随固溶温度升高而增大;当固溶温度大于960℃后,强度降低;αkv值随固溶温度升高而增大。试样固溶时效态的拉伸强度高于试样退火态的强度。TA31合金随着固溶温度的升高,初生α相含量减少,且组织中存在等轴初生α相+β转内细小的针状次生α相。  相似文献   

8.
研究了不同温度的固溶和时效工艺对Ti2041合金组织和硬度的影响。结果表明:当固溶温度为700℃时,随着保温时间增加,组织中初生α相(αp)的含量逐渐增多,晶粒尺寸逐渐增大;当固溶温度为750℃时,随保温时间增加,发生了静态再结晶,且有次生α相(αs)析出,晶粒尺寸也逐渐增大;当固溶温度为800℃时,晶粒内部出现α′马氏体,形貌由等轴状变为板条状。在不同固溶温度下硬度值变化也不同,当固溶温度为700℃时,随着保温时间的增加,硬度(HV)值从3016 MPa降到2852 MPa;在固溶温度为750℃时,硬度值随着保温时间的增加先升高后降低,最大值为3082 MPa;在固溶温度为800℃时,硬度值随着保温时间的增加逐渐增大,最大值为3314 MPa。在经时效处理后,不同时效温度下均出现了次生αs相。随时效温度的升高,次生αs相尺寸越小,显微硬度值逐渐增大,最大值达到4517.5 MPa,主要强化机制为第二相(次生αs相)弥散强化。  相似文献   

9.
研究了固溶处理对一种亚稳β型Ti-10Mo-6Zr-4Sn-3Nb钛合金组织与力性能的影响。结果表明:经(α+β)固溶后的组织为拉长的β晶粒,晶界和晶内析出球状初生α相;时效后,晶内β基体上均匀析出细小针状的次生α相。β单相区固溶后的组织为等轴β晶粒;时效后,晶界析出取向相近的次生α相片层,晶内析出针状、平行交叉的次生α相。随固溶温度的升高,初生α相体积分数减少,β晶粒度增加。经(α+β)固溶+时效后,析出的次生α相细小;经β单相区固溶+时效后,析出的次生α相较粗大;经固溶后,合金拥有较高的强度和塑性,且随固溶温度的升高,强度减小,塑性增加;(α+β)固溶时效强化大于β单相区固溶时效强化,二者差约60 MPa。  相似文献   

10.
本论文研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分在α/β和β区固溶处理后,在460℃~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相 ,导致强度和塑性较差。  相似文献   

11.
研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分别在α/β和β区固溶处理后,在460~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572 MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201 MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328 MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相,导致强度和塑性较差。  相似文献   

12.
研究了不同热处理工艺对Ti12LC低成本钛合金显微组织和力学性能的影响。结果表明:经分段固溶处理后,Ti12LC合金组织中出现大量的板条状次生α相,同时板条状α相的含量随着第二阶段固溶温度的降低而增多,尺寸也相应增大。同时分段固溶+时效的热处理工艺可以明显改善Ti12LC合金的冲击韧性,且当板条状α相含量约为10%时强度和塑韧性的匹配最佳。冲击断口分析表明:与常规热处理工艺相比,经分段固溶+时效处理后的Ti12LC合金,其冲击断口中纤维区和剪切唇所占比例更大,韧窝尺寸更大且深度更深。  相似文献   

13.
研究了轧制温度、变形量以及热处理工艺对Ti-1300合金显微组织的影响,并讨论了热加工工艺与合金组织结构以及形貌之间的联系规律。结果表明:两相区轧制后的加工态Ti-1300合金主要由等轴的β相和球状α相组成,随轧制温度向合金相变点温度的升高,α相逐渐溶解在β基体上,因而β单相区轧制的合金主要由等轴的β相晶粒组成,而合金的晶粒随变形量的增加而破碎越充分,组织也更加细小、均匀。两相区固溶处理后的Ti-1300合金在晶界和晶间析出球状以及条状α相,弥散分布于亚稳定β基体,产生细晶强化效应,而β单相区固溶处理后的合金主要由平均晶粒尺寸为60μm的等轴β相组成。两相区固溶处理后的时效态Ti-1300合金的组织主要由条状初生αp相、针状次生αs相以及β基体组成,热轧温度和变形量对时效态Ti-1300合金中αp相的形貌特征影响较小,但αp相和αs相都随时效温度的升高而不同程度的长大,针状次生αs相弥散分布在β基体上。  相似文献   

14.
研究了不同固溶温度以及不同时效温度下TC4合金的相结构以及微观组织形貌。结果表明,在930℃即双相区固溶后,TC4合金主要是由层片状的α相、针状α'马氏体相和部分β相组成;而在1030℃即β单相区固溶以后,合金则主要由密集的针状α'马氏体相和β组成;对不同固溶温度下的合金样品进行不同温度时效处理,针状α'马氏体相完全分解形成α相和β相,同时,随着时效温度的升高,α层片的厚度也逐渐增大。  相似文献   

15.
研究了不同热处理制度对TB2钛合金板材的显微组织及力学性能的影响,探究能够达到合金强度及塑性综合匹配较好的热处理制度。结果表明:双时效处理后合金晶粒粗大,次生相细小,弥散分布在晶内及晶界处;固溶时效处理后合金晶粒细小,晶内弥散分布着大量纵横交错的针状次生相。室温拉伸结果表明,双时效处理后合金的强度较高,塑性较差,且随时效温度的降低,合金强度提高,塑性降低。固溶时效处理后具有较好的强度与塑性匹配,其中以750℃固溶+510℃时效处理为最优热处理制度。最优条件下,强度达到1125 MPa,伸长率达到15%。双时效处理后室温拉伸断口呈撕裂状脆性断口,固溶时效处理后断口呈韧窝状。  相似文献   

16.
采用冷等静压法和粉末冶金法制备Ti-6Al-4V-1.5Mn钛合金,并利用光学显微镜、XRD、SEM、TEM和拉伸试验机等手段对固溶时效处理后合金的组织和力学性能进行观察和分析。结果表明:试验合金经950℃×40 min固溶处理后,合金基体的组织主要为板条状的α相和细小的α'相。随着固溶温度的增加,试验合金的抗拉强度和伸长率均增加,当在950℃固溶40 min时,试验合金的具有最佳的力学性能。当试验合金经950℃×40 min固溶处理后,随后在不同的温度下进行保温6 h时效处理。随着时效温度升高,试验合金的抗拉强度和伸长率均减少,其中试验合金在460℃时效6 h时具有最佳的力学性能,并对其拉伸断口的组织分析可知,韧窝的数量最多。最后由TEM和XRD分析了最佳固溶时效工艺处理后的样品,基体组织主要为α-Ti和β-Ti,并在XRD图谱中存在较为明显的衍射峰。  相似文献   

17.
采用正交试验方法,研究了固溶温度、时效温度和时效时间对?6.5 mm Ti-1300F合金丝材室温拉伸性能和显微组织的影响。结果表明:经α+β两相区固溶+时效处理后,合金的显微组织由细小等轴初生α相、弥散针状次生α相和β基体组成。时效温度对合金强度和塑性的影响最为显著,固溶温度次之,时效时间的影响最小。根据试验结果对热处理工艺进行了优化,经(760~790)℃/1 h, WQ+(500~540)℃/4 h, AC处理后,Ti-1300F合金丝材获得强度和塑性的良好匹配。  相似文献   

18.
通过改变固溶温度、固溶后的冷却方式和时效温度,研究了热处理制度对TA19钛合金微观组织和力学性能的影响。研究表明,随着固溶温度的升高,初生α相含量减少,使得伸长率和断面收缩率减小;而升高固溶温度使得β相中析出的细小次生α相增多,从而使室温抗拉强度增大。固溶处理后采用水冷时,由于从β相中析出大量细小弥散的次生α相,室温抗拉强度较大,但伸长率和断面收缩率较小。时效温度对微观组织和力学性能影响较小。  相似文献   

19.
采用不同的工艺对TC11钛合金进行了二次固溶及时效处理,分析了固溶和时效处理参数对钛合金组织和性能的影响。结果表明,钛合金经一次固溶处理后,α相和β相形貌变化较大;经二次固溶处理后,α相含量增多,β相含量减小。钛合金经固溶时效处理后微观组织主要是复杂交织的网状结构和初生球状α相。时效温度对钛合金力学性能影响不大,断裂方式为韧性断裂。  相似文献   

20.
采用OM、SEM、XRD、维氏硬度以及力学性能测试等方法,研究了固溶时效处理对TC6合金显微组织、相结构以及力学性能的影响。结果表明:TC6合金经过900 ℃固溶处理后,合金由片层α相、针状马氏体α′相以及β相组成;而经过1000 ℃固溶处理后,合金主要由针状α′马氏体相和β相组成。对不同固溶温度下的合金样品进行时效处理,针状α′马氏体相完全分解为α相和β相。并且随着时效温度升高,β相的相对含量逐渐增大。通过对比,TC6合金经过900 ℃固溶后在500 ℃下进行时效处理后综合力学性能达到最佳,此时的抗压强度和屈服强度为2000 MPa、1061 MPa,硬度值为499 HV0.2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号