首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method (SIM), the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 aluminum alloy semisolid slurry were investigated, and the solidification behavior of the remaining liquid phase (secondary solidification) was analyzed. The results indicate that the melt treatment temperature has significant effects on the final semisolid microstructures. The semisolid slurry which is suitable for the rheological forming can be produced when the melt treatment temperature is between 680 and 690 °C. During the isothermal holding process, the growth rate of the primary particles conforms to the dynamic equation of Dt3D03=Kt, and the coarsening rate of the primary particles is the fastest when the isothermal holding temperature is 600 °C. Additionally, the isothermal holding time also has obvious effect on the secondary solidification microstructures. The secondary particles are the smallest and roundest when the isothermal holding time is 3 min. The amount of the secondary particles gradually increases with the increase of isothermal holding temperature, and the eutectic reaction therefore is confined into small intergranular areas, contributing to the compactness of the final solidified eutectic structures.  相似文献   

2.
In this study, we prepared monodisperse spherical particles of a desired diameter using [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 alloy; the particles were prepared by using an atomization process developed by us. The particles have perfect sphericity and narrow size distribution along with a homogeneous composition. The phase transitions of particles from the fully glassy phase to the crystalline phase via mixed phase structures occurred as the particle diameter was increased; the particles produced in the fully glassy phase in an argon atmosphere had a diameter of less than 300 μm. This allowed the estimation of the intrinsic critical cooling rate for the particles with a fully glassy phase, Rc:Rc varied in the range of 700-900 K/s and depended only on the initial temperature of the alloy melt.  相似文献   

3.
A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder. Effects of delivery tube diameter, gas pressure, and melt superheat on powder characteristics were investigated. The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively. The results showed that the median diameters of all atomized powders ranged from 25 to 33 µm. The highest yield rate (72.13%) of fine powder (<50 μm) was obtained at a superheat of 350 K. The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter. Powders with bluntness values between 96% and 98% accounted for over 60%. The outgrowth values demonstrated that 70%?85% of all powders did not contain satellite particles, with few powders adhered two or three particles. Not only Al and Si phases were present but also a metastable Al9Si phase was detected.  相似文献   

4.
The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters on the heat transfer behaviors of the atomized droplets were analyzed. The results show that the initial cooling rates of different size droplets range from 105 to 107 K/s, thus producing the coating microstructure with the features of rapid solidification. The droplet size, atomization gas pressure and droplet superheat have great influences on the heat transfer behavior of the droplet. The droplet temperature and cooling rate are much sensitive to the droplet sizes, but insensitive to the atomization gas pressure and droplet superheat. It can be predicted that the properties of HVAS coatings will be improved by decreasing droplet size as well as increasing atomization gas pressure and droplet superheat in certain extents.  相似文献   

5.
The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy (HEA) powders was investigated. The spherical HEA powders (D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×104 to 1.11×106 K/s.  相似文献   

6.
This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process (PREP). Scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology, phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes. The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size. All the powders exhibit a main B2-TiNi phase, while large powders with the particle size ≥178 μm contain additional minor Ti2Ni and Ni3Ti secondary phases. These secondary phases are a result of the eutectoid decomposition during cooling. Particles with different particle sizes have experienced different cooling rates during atomization. Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders; in particular, the transformation temperature decreases with decreasing particle size.  相似文献   

7.
利用真空感应熔炼气雾化法制备1720 MPa级马氏体时效钢粉末,研究雾化压力、过热度、气体加热温度对粉末特性的影响。结果表明,当雾化压力较高、过热度较高、气体加热温度较高的情况下,金属粉末的细粉收得率较大,松装密度较高,流动性较好。最佳雾化参数为漏嘴孔径ϕ5 mm、雾化压力5.0 MPa、过热度245 K、雾化气体温度100 ℃。该工艺条件下的时效钢粉末球形度良好,粉末流动性为20.15 s/50 g,松装密度为4.23 g/cm。  相似文献   

8.
A technique for the preparation of an MMC using centrifugal casting has been developed and tested for its feasibility in preparing Al-12Si-2Mg/Al2O3- particulate composites. The process is evaluated by observing the structure, measuring the homogeneity in the distribution of the ceramic particles, the porosity type and distribution, and by analysing the metal/ceramic interface for possible reactions.

The different processing conditions applied are: rotational frequency 16, 22.7 and 33.3 Hz (960, 1360 and 2000 rpm), Al2O3 particle size 30, 47, 60 and 89 μn, melt superheat 20, 100 and 150°C, specimen radius of rotation from 145 to 180 mm.

Because the ceramic particles are close packed, a uniform particle distribution with no agglomeration is obtained, and the interparticle distance depends only on the alumina particle size. The metal/ceramic interface was sharp with no reaction. Microporosity is observed in some locations due to incomplete infiltration between the alumina particles. Increasing rotational speed, particle size, superheat, and radius of rotation help to decrease the microporosity. The macrostructure along the composite length showed columnar grains followed by equiaxed grains. The type and size of the structure depend mainly on the composition of the matrix and not on the presence of the alumina particles.  相似文献   

9.
The effect of melt superheat on microstructure of Al4Fe2Mn1.5 Monel alloy made by vacuum melting method was studied. The results show that the alloy consists of dendritic γ matrix and γ′ phase, wherein γ′ phase has two morphologies at different melt superheat. One is divorced eutectic γ′ which distributes in the interdendritic area, the other distributes dispersedly in single particle on the dendritic arm and exists in the petalform shape in the transition area between dendritic arm and interdendritic area. With the increase of superheat, the dendrite becomes finer, the primary dendritic arm is melted off and the secondary dendritic arm spacing decreases. The size of γ′ phase distributed on the dendritic arm becomes smaller and the divorced eutectic γ′ phase increases.  相似文献   

10.
Hybrid atomization is a new powder-making method and can produce economically very fine, clean, spherical tin alloy powders with average particle size about 10μm and narrow size distributions. The key concept of hybrid atomization is to control the liquid film formation on disk for fine powder production. Low-pressure gas atomization was utilized to promote the formation of a very thin stable liquid film before centrifugal breakup and give a better preparation for the final disintegration of melts. Besides the breakup ability of the rotating atomizer, the characteristics of liquid film on rotating disk affect the atomization mechanism and results remarkably. The main disintegration mode of melt is the breakup type of liquid film, which depends on the film instability and the atomization ability of the rotating disk. On the other hand, the mean powder size relates closely to the film thickness. The powder size distribution is mainly controlled by the atomization mode and the stability, flow type of liquid film on the rotating disk. A very thin, stable liquid film with long ligaments and a small pitch in LF mode results in very fine uniform tin alloy powders.  相似文献   

11.
12.
A new technique to achieve sound semi-solid slurry by introducing angular oscillation during the earlier stage of solidification is reported. The effects of melt superheat and oscillation intensity on the grain refinement and morphology of primary Al particles in aluminum alloy A356 were investigated. Results confirmed that a fully grain refined and non-dendritic microstructure could be obtained using proper processing conditions, and the superheat of melt could be increased to a higher level. The primary Al particle had average diameter of 58 μm and average shape factor of 0.84, and featured zero entrapped eutectic.  相似文献   

13.
The Debye temperature, ΘD, of σ-phase Fe100−xMox compounds with 47 ≤ x ≤ 56.7 was determined from the temperature dependence of the centre shift of Mössbauer spectra recorded in the temperature range of 80–300 K. Its compositional dependence shows a weak increase with x the rate of which, in a linear approximation, is equal to 3.1 K/at%. The results are compared with the corresponding ones found previously for the σ-phase in Fe–Cr and Fe–V compounds showing that ΘD-values are characteristic of a given alloy.  相似文献   

14.
Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing   总被引:2,自引:0,他引:2  
Intensive melt shearing was applied to the commercial AZ91D alloy melt to investigate its effects on grain refinement. Alloy melts with and without melt shearing were also filtered using a pressurized filtration technique to concentrate the potential nucleating particles for electron microscopic examination. The results showed that intensive melt shearing resulted in significant refinement of both the Al8Mn5 intermetallics and the primary α-Mg phase in the as-cast AZ91D alloy, and that this grain-refining effect is insensitive to the superheat and can persist even after prolonged isothermal holding. The pressurized filtration experiments showed for the first time that oxide films and skins consist of nano-sized MgO particles populated densely in a liquid matrix. Intensive melt shearing can effectively disperse such MgO particles throughout the alloy melt. The HRTEM investigation and detailed crystallographic analysis confirmed that dispersed MgO particles act as potent heterogeneous nucleation sites for both the Al8Mn5 and α-Mg phase.  相似文献   

15.
AM60B magnesium alloy was refined by MgCO3 and its microstructural evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the grain size from 329 μm of the unrefined alloy to 69 μm. A semisolid microstructure with small and spheroidal primary particles can be obtained after being partially remelted. The microstructure evolution can be divided into four steps: the initial rapid coarsening, structure separation, spheroidization and final coarsening. Correspondingly, these four steps result from the phase transformations of β→α, α+β→L and α→L, α→L and two reverse reactions of αL and Lα, respectively. One spheroidal primary particle in the semisolid microstructure usually originates one dendrite in the as-cast microstructure. The variation of primary particle size with holding time does not obey the LSW law, Dt3?D03=Kt, after the semisolid system is in its solid-liquid equilibrium state. Longer heating duration makes the primary particles more globular, but it makes their size larger at the same time.  相似文献   

16.
The peculiarities of radiothermoluminescence of gamma-irradiated borosilicates have been investigated in the temperature range of 80–300 K. It was found that the thermal emission curves of B2O3/SiO2 were characterized by the presence of a narrow peak at T = 136 K with activation energy of E a = 0.16 eV and a wide asymmetrical peak at T = 178 K and E a = 0.28 eV with a shoulder at T = 205 K and E a = 0.32 eV. It was established that the RTL peak at 136 K was associated with the electronic radiation center, and the peaks at 178 and 205 K with the hole centers of the B3+ and B4+ types, respectively. It was shown that irradiation with low doses (D γ ≤ 0.5–30 kGy) resulted in changes in the coordination environment of the boron from the tetrahedral to the trigonal one at the B2O3 content in the SiO2 of ~ 1.5 wt %. A radiation-resistant stable structure of borosilicate with the maximum content of trigonal-coordinated boron atoms is formed at D γ ≈ 30 kGy.  相似文献   

17.
A multi-layer ceramic composite melt pour tube for superheating and pouring of molten Ti-6Al-4V (wt.%) was tested using an existing Ti atomization system. Free fall gas atomization was conducted with the pour tube while liquid metal temperatures were measured in situ using a two-color optical pyrometer. Post-process pour tube erosion was compared with pre-process matching surfaces, and minimal change in interior liner thickness was found. Microstructural analysis, phase identification, and composition determination of the resulting gas-atomized powder indicated minimal contamination from the composite pour tube despite very high liquid superheat, approaching 300° C. Hot isostatic pressing of the powder resulted in mechanical properties exceeding the MIL-T-9047 standard for Ti-6Al-4V.  相似文献   

18.
Abstract

Fluid flow strongly influences the grain morphology promoting growth of the columnar structure deflected towards the incoming flow. The effects of forced flow and initial superheat on columnar grain deflection of aluminium alloys were experimentally investigated in this work. The computer simulations of the flow with solidification included previously validated against experimental temperature measurements were used to interpret experimental results. It is shown that the deflection degree strongly depends on the inlet velocity, melt superheat, and alloy composition. Generally, the deflection angle increases with accelerated flow and at a higher superheat. Some quantitative correlations are obtained. Furthermore, several factors affecting the deflection of the grains are discussed.  相似文献   

19.
Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400°C/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43−1.2 cm/s and 15–28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 105 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 107 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural refinement and modification. The size of the primary silicon decreased from approximately 1 μm to 30 nm while the formation of iron-containing intermetallic compounds was suppressed. Supersaturation of the aluminum matrix in an amount of ∼7 at.% Si was noticed from the XRD patterns. During the hot consolidation process, coarsening of the primary silicon particles and precipitation of β-Al5FeSi phase were observed. Evaluation of the compressive strength and hardness of the alloy indicated an improvement in mechanical properties due to the microstructural modification.  相似文献   

20.
NiFe2O4 nanoparticles have been synthesized by citrate precursor gel formation with subsequent heat treatment. Differential thermal and thermogravimetric (DTA/TG) analyses show that the metal citrates decomposed around 230 °C followed by crystallization of the ferrite. X-ray diffraction (XRD) patterns reveal the formation of the cubic spinel phase in the samples after sintering the gel at 350 °C, 500 °C and 700 °C. For the samples annealed at 350 °C and 500 °C a small amount of α-Fe2O3 was detected whereas single phase was obtained for the sample annealed at 700 °C. The lattice constant a for all the samples is comparable to the value of the bulk material. The mean crystallite size DXRD of the samples determined from XRD line broadening is 26.2-28.5 nm. Transmission electron microscope (TEM) analysis shows that the single-phase particles form clusters with the particle size in the range of 21-82.5 nm and the most probable value DTEM of 55.4 nm. Magnetic measurements show that its Curie temperature TC is close to the bulk value while the spontaneous magnetization Ms at 5 K is lower than that of the bulk. The thermal variation of Ms in the temperature range from 5 to 300 K can be best fitted to a modified Bloch Tα law with the exponent value α ≈ 2. The magnetization data are explained with reference to the disordered surface spins and the finite size effects. In this investigated temperature range, the coercive force Hc decreases linearly with increasing temperature. The coercivity mechanism in the nanoparticle sample with broad particle size distribution is expected to be complex and different factors which affect the Hc value were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号