首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
薛超  罗耀华 《应用科技》2006,33(5):43-46
电压型PWM整流器通过对整流器直流侧电压PWM调制,不但能使直流电压在一定范围内可调,而且使整流器的交流侧电流正弦化,并能够实现单位功率因数运行,实现高功率因数的整流装置.而控制PWM整流器交流侧的方法有多种,从电压型PWM整流器的静态模型入手,详细分析了电压型PWM整流器交流侧电流电流的控制规律,得出了一种间接电流控制模型,并阐述了间接电流控制的PWM整流器系统的设计,最后对该方法进行仿真,结果表明,采用这种电流控制,能够实现PWM整流器高功率因数运行.  相似文献   

2.
为了抑制PWM整流器负载扰动对直流侧输出电压产生的影响,提出将自抗扰控制器引入基于电压定向的直接功率控制三相电压型PWM整流器中的电压控制方案.将负载扰动归到未知扰动中,用扩张状态观测器对负载扰动进行观测和补偿,结合自抗扰控制器进行电压外环控制,并与模糊PID控制进行了仿真对比.仿真结果表明,该方法能够快速、无超调对输出电压进行控制,实现了单位功率因数运行,并能有效抑制负载变化的影响.  相似文献   

3.
三相电压型PWM整流器滑模变结构直接功率控制   总被引:1,自引:0,他引:1  
摘 要:本文提出了一种基于滑模变结构控制理论的三相PWM整流器直接功率控制方案,它利用滑模变结构控制系统的鲁棒性和动态性能较好、参数整定简单的优点,解决了传统上基于PI算法的直接功率控制系统抗扰性能差、对PI控制参数较敏感、网侧电流总谐波含量(THD)较大的缺点;在MATLAB/SIMULINK环境中建立仿真模型,对滑模控制和PI控制两种方案进行仿真比较,结果表明滑模控制方案明显优于PI控制方案.  相似文献   

4.
用于三电平脉宽调制整流器中的虚拟磁链   总被引:1,自引:0,他引:1  
为实现无传感器控制,提高系统可靠性和降低成本,研发了三电平脉宽调制整流器中虚拟磁链的观测方法,给出基于虚拟磁链的三电平脉宽调制整流器无网侧电压传感器控制的两种典型应用。分析了应用虚拟磁链后系统启动容易出现过大的电流浪涌问题,提出虚拟磁链预计算和软启动控制策略。实验结果表明,该方法能够实现三电平脉宽调制整流器的无网侧电压传感器控制,并能降低系统启动电流约50%。  相似文献   

5.
为实现无传感器控制,提高系统可靠性和降低成本,研发了出三电平脉宽调制整流器中虚拟磁链的观测方法,给出基于虚拟磁链的三电平脉宽调制整流器无网侧电压传感器控制的两种典型应用。分析了应用虚拟磁链后系统启动容易出现过大的电流浪涌问题,提出虚拟磁链预计算和软启动控制策略。实验结果表明,该方法能够实现三电平脉宽调制整流器的无网侧电压传感器控制,并能降低系统启动电流约50%。  相似文献   

6.
电流环时序方法在PWM整流器中的应用   总被引:1,自引:0,他引:1  
为了提高大容量脉冲宽度调制(pulse-width modulation,PWM)整流器的电流环带宽,将一种新的采样-计算-更新时序方法应用于电流环。该方法利用高速微处理器的运算能力,消除了电流环中的计算延时,但同时限制了整流桥交流侧电压矢量的幅值,降低了电网电压升高时PWM整流器对交流侧电流和直流母线电压的控制能力。利用PWM整流器功率因数可调的优点,在电网电压升高时控制PWM整流器从电网吸收一定的无功功率,可以对此进行一定的补偿。实验表明,该方法的应用显著增加了电流环带宽,配合对无功电流的控制,提高了PWM整流器的性能。  相似文献   

7.
基于直接电流控制的PWM整流器功率控制   总被引:1,自引:0,他引:1  
在以电网电压矢量定向的同步旋转坐标中,通过分析有功功率和无功功率与交流侧电压、电流空间矢量之间的关系,提出基于内环直接电流控制的PWM整流器功率控制方案,根据PWM整流器交流侧电压方程及有功功率传递关系建立PWM整流器功率控制系统数学模型,完成对电流、电压PI调节器参数的整定。仿真结果表明:PWM整流器启动时的直流电压超调量小,响应速度快,具有极佳的动静态性能。  相似文献   

8.
电压型PWM整流器直接功率控制系统主电路参数设计   总被引:5,自引:0,他引:5  
为了解决电压型PWM整流器直接功率控制系统主电路参数设计问题,根据整流器在dq两相同步旋转坐标系中的数学模型建立了其功率控制数学模型. 基于功率控制数学模型,结合整流器直接功率控制系统的特点,推得交流侧电感是由功率、功率滞环比较器环宽及开关平均频率决定的;直流侧直流电压是由交流电压、电感及负载决定的;突加负载时直流侧电容是由直流电压波动、功率、电感及负载决定的. 根据上述影响主电路参数的诸多因素,提出交流侧电感、直流侧电压及直流侧电容的设计方法. 计算机仿真和实验证明了本文提出的设计方法是可行的.  相似文献   

9.
与基于同步旋转坐标系的PWM整流器电网电压定向矢量控制策略相比,静止坐标系下的电压定向矢量控制策略省去了电流环解耦以及旋转坐标变换,使控制系统更加简单;同时,控制策略可以很方便地实现交流侧低次电流谐波的补偿.在静止坐标系下建立了PWM整流器控制系统的数学模型,并对控制系统的动静态性能及谐波抑制能力进行分析.研究结果表明,静止坐标系下PWM整流器的电压定向矢量控制及谐波补偿策略能够实现对交流信号的无静差跟踪和对交流侧低次电流谐波的补偿,提高了电网的电能质量.  相似文献   

10.
针对电网电压不平衡条件下,Vienna整流器存在的负序电流及有功功率纹波问题,提出一种谐振滑模控制策略。首先,利用三相电压电流推导了三相Vienna整流器的直接功率控制模型;然后,在电压不平衡条件下,分析了系统不同控制目标的二倍频纹波补偿量,并设计了谐振控制器以便快速有效地跟踪纹波;最后,应用滑模控制策略对功率环进行设计,并通过对Lyapunov方程的求解确定Vienna整流器输出电压控制量。在MATLAB/Simulink上搭建了Vienna整流器仿真平台,对所提的谐振滑模控制策略的有效性进行了验证。仿真结果表明,该策略提高了系统在电网不平衡条件下的稳定性及控制精度。与传统PI控制策略相比,在电网不平衡下,Vienna整流器交流侧负序电流被抑制到原有的35.7%,有功功率纹波减少了67%。  相似文献   

11.
建立了同步旋转坐标系下的三相电压型PWM整流器(VSR)的非线性数学模型,针对有功电流和无功电流强耦合的特点,提出一种基于该坐标系下的电压和电流双闭环控制算法,其中电压外环采用滑模控制算法,电流内环采用状态反馈精确线性化控制策略,最后建立了仿真模型并与传统PI控制进行了对比仿真,结果表明,该复合控制方案结合了两者的优点,使VSR既具有变结构控制良好的鲁棒性,又能实现无功电流和有功电流的解耦控制,系统能保证很高的功率因数,输出电压恒定,能适应负载的扰动和非线性变化,具有很好的静动态性能。  相似文献   

12.
数字锁相环与滤波技术在PWM整流器中的应用   总被引:1,自引:1,他引:0  
三相电压型SVPWM整流器可采用基于MATLAB和FPGA的VHS-ADC高速数字信号处理平台建模,但建模时,三相静止坐标系到两相同步旋转坐标系的Park变换和两相旋转坐标系到两相静止坐标系的变换初相位不定,使变换不能顺利实现,另外,电网电压、电流采集时存在噪声,影响了系统稳定性。在常规的三相电压型SVPWM整流器模型基础上,增加数字锁相环以跟踪电网电压的相位和频率,增加FIR数字滤波器对信号进行处理,减少干扰。在VHS-ADC平台上设计了电压外环PI环节、电流内环PI环节和坐标变换模型。通过小功率实验,三相电压型SVPWM控制系统运行稳定,验证了数字锁相环和FIR数字滤波器应用于三相电压型SVPWM整流器的可行性。  相似文献   

13.
三相电压型PWM整流器的反馈线性化和滑模控制   总被引:2,自引:0,他引:2  
建立了同步旋转坐标系下的三相电压型脉宽调制(PWM)整流器(VSR)的非线性数学模型,针对有功电流和无功电流强耦合的特点,提出一种基于该坐标系的电压和电流双闭环控制算法,其中电压外环采用滑模控制算法,电流内环采用状态反馈精确线性化控制策略,最后建立了仿真模型并与传统PI控制进行了仿真对比.结果表明,该复合控制方案结合了两者的优点,使VSR既具有良好的鲁棒性,又能实现无功电流和有功电流的解耦控制,系统能保证很高的功率因数,输出电压恒定,能适应负载的扰动和非线性变化,具有很好的静动态性能.  相似文献   

14.
介绍了一种双PWM变频器系统的控制策略.在PWM整流侧采用空间矢量的无电压传感器的虚拟磁链的直接功率控制和在PWM逆变侧采用无速度传感器的矢量控制.这些控制策略使系统保持了很好的动态响应和静态特性.仿真结果表明本系统有良好性能.从PWM逆变侧到PWM整流侧增加的功率环提高了功率能量流动的动态特性,使输入和输出能量匹配从而减小直流侧电容的大小.  相似文献   

15.
永磁同步电机无速度传感器的直接转矩控制系统   总被引:1,自引:0,他引:1  
提出了一种基于降阶观测器的无速度传感器控制方法,用于永磁同步电机直接转矩控制系统的转速辨识.该方法将永磁同步电机的降阶运动电动势观测器与模型参考自适应系统(model reference adaptivesystem,MRAS)进行有机的结合,选取永磁同步电机电压方程作为参考模型,永磁同步电机降阶状态方程作为可调模型.理论分析和仿真结果表明,所提出的永磁同步电机无速度传感器直接转矩控制系统的转速辨识方法具有较强的鲁棒性和优越的动静态性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号