首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of PbZr0.52Ti0.48O3 (PZT) powders was realized via coprecipitation route or two-stage precipitation route. The thermal behavior and phase evolution of the PZT precursor were investigated with DTA/TG and followed with XRD, respectively. The thermal stabilities of the synthesized PZT powders were evaluated with TG. It concluded that the PZT powder prepared via two-stage precipitation route is of pure perovskite phase and of good thermal stability because the combination of Zr4+ and Ti4+ ions is enhanced and Pb(OH)2 is encapsulated by (Zr0.52Ti0.48)O(OH)2. However, the PZT powder obtained via coprecipitation route is of poor thermal stability due to the formation and evaporation of PbO.  相似文献   

2.
Pb(Zr0.52Ti0.48)O3 films with highly uniform c-axis orientation were fabricated on PbTiO3 (PT)/ Pt(111)/SiO2/Si(100) substrates by hot isostatic pressing (HIP) from the amorphous state. All the PZT samples HIP-treated 500°C for 1 h under gas pressures of 1.0–2.0 MPa showed the preferred (001) orientation with c-axis orientation, α > 0.80. The relative permittivity tended to decrease gently with increasing HIP pressure, whereas the dielectric loss increased almost linearly in the 1.5–100 MPa. The PZT sample treated at 1.5 MPa had a symmetric and slim hysteresis loop shape with a remanent polarization, P r = 15 μ C/cm2 and coercive field, E c = 60 kV/cm. Both samples treated at 10 and 100 MPa exhibited almost the fatigue-free behavior that resisted degradation even after 3 × 1010 cycles.  相似文献   

3.
Lead zirconate titanate (PbZr x Ti1?x O3) or PZT ceramics are a class of piezoelectric materials that are currently experiencing widespread use in industry as electromechanical devices. PtSi/ZnO/PZT thin films were deposited by pulsed laser deposition at relatively low substrate temperature. The PZT thin films on PtSi substrates and on ZnO buffer layer were deposited at substrate temperature 300°C. The composition analysis shows that the film deposited at low temperature is stoichiometric. The films exhibit ferroelectric nature with coercive field of 19.6 kV/cm for 800 nm thick film. The leakage current density of the films shows a good insulating behavior.  相似文献   

4.
Abstract

A modified metal-organic decomposition process, MOD has been successfully utilized to improve the ferroelectric properties of Pb(Zr0.52Ti0.48)O3, PZT, thin films. Multilayer PZT/Pt(Si) films, which contain 0.12 μm layer of spin coated PbO-excess (10 mol%) precursors on top of 0.12 μm layer of stoichiometric PZT precursors, exhibit superior ferroelectric properties (Pr=14.2 μC/cm2; Ec=62 kV/cm) to the single layer PZT/Pt(Si) films of the same thickness (0.24 μm), which are either stoichiometric or 10 mol% Pb-enriched. The ferroelectric properties are further improved when the PZT films were synthesized using a thin pulsed laser deposited (PLD) prenucleation layer (0.06 μm). The subsequently MOD-prepared PZT films posses high remanent polarization (Pr=23.2–26.6 μC/cm2) and low coercive field (Ec=62.9–69.0 kV/cm).  相似文献   

5.
《Integrated ferroelectrics》2013,141(1):1233-1240
(100) textured Pb(Zr0.48Ti0.52)O3 (PZT) films were prepared on silicon substrates by MOD process and laser lift-off technique. Textured PZT films were first grown on (001) Sapphire substrate, using Ba(Mg1/3Ta2/3)O3 (BMT) materials as buffer layer. The (100) textured PZT/BMT/Sapphire films were attached to Si substrate using a transient-liquid-phase Pd-In bonding process, and then were separated from Sapphire substrates by a laser lift-off process, in which, a 38 ns pulse from excimer laser (248 nm) at 600 mJ/cm2 fluence melted BMT buffer layer, expelling the Sapphire. The crystallinity of the surface of films was further improved by laser annealing. X-ray diffraction analysis of the PZT films showed that the crystallographic structure of films is maintained during laser lift-off process. Electrical testing of the films after laser lift-off process followed by laser annealing demonstrated that the ferroelectric properties are retained for the transferred films (Pr = 9μ C/cm2 and Ec = 74 kV/cm).  相似文献   

6.
ABSTRACT

Photovoltaic effect in ferroelectric materials exhibits potential for applications of sensors and remote controls in micro-electro-mechanical systems, and a systematic evaluation on the photovoltaic behavior in ferroelectric materials becomes important. However, as a critical parameter that determines the photovoltaic output in ferroelectric thin films, the film thickness effect on photocurrent output has not been investigated for thin film samples. In this work, a theoretical model has been developed to describe the thickness-dependent photocurrent in (Pb0.97La0.03)(Zr0.52Ti0.48)O3(PLZT) thin films with a sandwich electrode structure. This model indicates that photocurrent increases exponentially with the decrease in film thickness. Therefore, a significantly enhanced photocurrent can be expected in thinner PLZT films. The predicted thickness dependence of the short circuit photocurrent was also supported by our experimental results.  相似文献   

7.
Heterolayered Pb(Zr1 − x Ti x )O3 thin films consisting of alternating PbZr0.7Ti0.3O3 and PbZr0.3Ti0.7O3 layers were successfully deposited via a multistep sol-gel route assisted by spin-coating. These heterolayered PZT films, when annealed at a temperature in the range of 600–700C show (001)/(100) preferred orientation, demonstrate desired ferroelectric and dielectric properties. The most interesting ferroelectric and dielectric properties were obtained from the six-layered PZT thin film annealed at 650C, which exhibits a remanent polarization of 47.7 μC/cm2 and a dielectric permittivity of 1002 at 100 Hz. Reversible polarization constituents a considerably high contribution towards the ferroelectric hysteresis of the heterolayered PZT films, as shown by studies obtained from C-V and AC measurement.  相似文献   

8.
ABSTRACT

Multilayered piezoelectric micro-diaphragms have been successfully fabricated by micro-electro-mechanical-system (MEMS) processing. The micro-diaphragms consisted of diol based sol-gel derived Pb(Zr0.52Ti0.48)O3 (PZT) capacitor, sputtered Pt electrode, and low temperature oxide(LTO)/SiNx/Si substrate. The PZT film exhibited (111) oriented structure. The dielectric constant and loss of the PZT thin films were 800 and 3% at 100~ 100 kHz, respectively. The remanent polarization was 20 μ C/cm2. The lateral dimension of the PZT film was varied relative to the square-shaped supporting membrane with 300 or 400 μ m length. The relative size (ratio of lateral dimensions) of the PZT film to the supporting membrane was varied from 0.7 to 1.1 to investigate its influence on the system performance. The micro-diaphragm exhibited mechanical displacement from 0.067 to 0.135 μ m at 15 V and had a maximum displacement at a ratio of relative size of 0.8, regardless of the lateral size of the supporting membrane. The fundamental resonant frequency of the micro-diaphragm which has 300 μ m length supporting membrane was in the range of 348 kHz to 365 kHz, depending on the relative size. As the PZT size increased relative to the supporting membrane, the resonant frequency decreased and reached a minimum at the relative size of 0.8. The micro-diaphragm with the supporting membrane (400 μ m length) had a lower resonant frequency, i.e., 251~270 kHz, but showed a similar behavior to the micro-diaphragm with the supporting membrane (300 μ m length) in relation to the resonant frequencies with the relative size.  相似文献   

9.
PbZr0.58Ti0.42O3 (PZT) ferroelectric thin films with Bi3.25La0.75Ti3O12 (BLT) buffer layer of various thickness were fabricated on Pt/TiO2/SiO2/p-Si(100) substrates by rf-magnetron sputtering method. The pure PZT film showed (111) preferential orientation in the XRD patterns, and the PZT/BLT films showed (110) preferential orientation with increasing thickness of the BLT layer. There were no obvious diffraction peaks for the BLT buffer layer, for its thin thickness in PZT/BLT multilayered films. There were the maximum number of largest-size grains in PZT/BLT(30 nm) film among all the samples from the surface images of FESEM. The growth direction and grain size had significant effects on ferroelectric properties of the multilayered films. The fatigue characteristics suggested that 30-nm-thick BLT was just an effective buffer layer enough to alleviate the accumulation of oxygen vacancies near the PZT/BLT interface. The comparison of these results suggests that the buffer layer with an appropriate thickness can improve the ferroelectric properties of multilayered films greatly.  相似文献   

10.
Abstract

We have studied sintering and densification of PbZr0.52Ti0.48O3 (PZT) films derived from diol-based sol-gel solutions. We found that densification by sintering began at below 750°C and completed at 850°C in 5 min. Initially, 0.83- μm-thick PZT single-coated films were prepared on Pt/Ti/SiO2/Si substrates from stable propylene-glycol (l,2-propanediol)-based solutions by crystallization at 700°C. The crystallized films consisted of fine perovskite grains and voids. We studied the firing temperature dependence of various properties such as microstructure, crystallinity, and ferroelectric properties for the single-coated films. Finally, 0.54- μm-thick PZT single-coated dense films were prepared by firing at 850°C for 5 min. In order to prepare thicker PZT dense films, we studied low-temperature sintering of PZT multicoated thick films. Using this approach, 1.7- μm-thick PZT dense films were prepared by firing at 850°C for 5 min.  相似文献   

11.
Abstract

Lead zirconate titanate (PZT, PbZr0.52Ti0.48O3) films of thickness 22 μm have been deposited on stainless steel substrates by spin-coating a PZT solution containing PZT powder. The solution had a concentration of 1.2 M and was dispersed with PZT powder in a 1:1 powder/solution molar ratio. The films were rapidly heated to 400°C and annealed for 15 min, and then they were further annealed in an oven at 650°C for 30 min. The results of X-ray diffraction studies show that the films have a pure perovskite phase. The inter-diffusion of ions at the PZT/stainless steel interface was prevented by using a ZrO2 barrier layer. The films were found to have good ferroelectric and piezoelectric properties.  相似文献   

12.
Bilayered thin films consisting of Pb(Zr0.52Ti0.48) O3 (PZT) and (Bi3.15Nd0.85)Ti3O12 (BNT) layers are successfully deposited on Si(100)/SiO2/Ti/Pt substrate by a combined process involving sol-gel and RF-sputtering. Their dielectric properties cannot be described by the simple rule of mixture on the basis of the series connection model. There occurs a dielectric layer of lower dielectric permittivity in the bilayered thin film, which degrades the polarization behaviors. The bilayered film gives rise to an improvement in fatigue resistance up to 1010 switching cycles. Moreover, the domain pinning effect after polarization switching is reduced greatly as compared to that of single layered PZT and BNT thin films.  相似文献   

13.
Beneficial effect of nano-sized PZT powder incorporation on modifying the characteristics of Pb(Zr0.52Ti0.48)O3, PZT films was demonstrated. The amorphous phase derived from metallo-organic-decomposition (MOD) process started to crystallize at a post-annealing temperature as low as 500°C and can withstand 650°C post-annealing temperature process without inducing the PbO-loss phenomenon. However, 500°C post-annealed PZT films still exhibit paraelectric properties, which can be ascribed to the co-existence of large proportion of amorphous phase, surrounding the crystalline phase. It needs at least 650°C post-annealing process to fully developed the pervoskite structure for PZT films. The remnant polarization (Pr) of the PZT films increases with the proportion of crystalline phase, achieving Pr = 24.9 μC/cm2 for 650°C annealed films, with coercive field (Hc) around Ec = 373 kV/cm.  相似文献   

14.
Abstract

A hetero-epitaxial Au/PbZr0.48Ti0.52O3(PZT)/SrRuO3(SRO) capacitor was fabricated on a single crystal SrTiO3 (STO) substrate by pulsed laser deposition. An SRO buffer layer (a nucleation layer) was formed at the SRO/STO interface to ensure the highly epitaxial growth of the PZT and SRO films. An X-ray diffraction measurement revealed that the (00l) planes of the PZT and SRO grew parallel to the substrate surface. A transition layer of ~ 5 nm thickness was observed at the SRO/STO interface by high-resolution transmission electron microscopy (HR-TEM). This transition layer corresponds to the nucleation layer intentionally grown at the interface. Remanent polarization of the capacitor was 32.1 μC/cm2 due to the good epitaxial growth of the films.  相似文献   

15.
Abstract

Zr-rich PZT and La-doped PT films were fabricated on a PLT/Pt/Ti/SiO2/Si or Pt/Ti/SiO2/Si substrate by an RF planar magnetron sputtering equipment using powder targets with compositions of PbZr0 94Ti0.06O3, PbZr0.92Ti0.08O3 and Pb0.85La0.15 Ti0.96O3 with excess PbO of 20 mol%. The dielectric constants of PZT and PLT films showed anomalies at the transition temperatures of around 246 and 300°C, and their dielectric constants at room temperature were 350 and 1070, respectively. Significant pytroelectric currents were observed in both as-grown PZT and PLT films even without a poling treatment. The pyroelectric coefficients of those films were 10 and 30 nC/cm2K, respectively. Therefore, Zr-rich PZT and [111]-oriented PLT films sputtered on Pt/Ti/SiO2/Si substrates possess desirable properties for potential applications to pyroelectric devices.  相似文献   

16.
Bilayered ferroelectric thin films consisting of Pb(Zr0.52Ti0.48)O3 (PZT) and (Bi3.15Nd0.85)Ti3O12 (BNT) have been successfully synthesized on Pt/Ti/SiO2/Si substrates, via a combined sol–gel and rf-sputtering route. Their ferroelectric and dielectric properties are critically dependent on the phases present, film texture and in particular layer and film thicknesses. Due to the coupling of PZT and BNT bilayers, there requires an optimized thickness combination of the two ferroelectric layers, in order to give rise to the wanted ferroelectric and dielectric properties, while the phenomenon can not be accounted for by the simple series connection model.  相似文献   

17.
Abstract

Organometallic chemical vapour deposition is a suitable technique for the deposition of thin films of oxidic compounds such as lead zirconate titanate, PbZrxTi1?xO3. Above a deposition temperature of about 600°C stoichiometric PbZrxTi1?xO3 films can be grown on platinized silicon wafers within a large process window, independent of the precursor partial pressures and the deposition temperature. This is the result of a self-regulating mechanism. The PbZrxTi1?xO3 films have excellent ferroelectric properties exhibiting high values, up to 60μC/cm2, for the remanent polarisation. The value of the coercive field strength varies between 50 and 180 kV/cm, dependent on the composition. Layers with comparable properties can also be grown at lower temperatures, down to 500°C. In this case careful control of the gas-phase composition is required to obtain films with the correct stoichiometry.  相似文献   

18.
In this investigation, PZT films were sputter-deposited on Si/SiO2/Ti/Pt substrates using a dual-target system. The dual targets Pb/PZT(PbZr0.54Ti0.46O3) and PbO/PZT(PbZr0.54Ti0.46O3) were used to reveal the effects of various lead compensation source materials on the microstructure and ferroelectric properties of the films. The structures of the films were characterized by X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM). The chemical binding state was determined using X-ray photoelectron spectrometry (XPS). Ferroelectric polarizability was measured using a Radiant Technology RT66A tester. The influence of deposition temperatures on the microstructure and ferroelectric properties of the films was studied. Perovskite PZT films were successfully deposited using the Pb/PZT and the PbO/PZT dual target sputtering systems at a substrate temperature of between 500 and 580C. Structural change was elucidated as a function of deposition temperatures and the lead sources were correlated with the ferroelectric properties of the film. The ferroelectric characteristics of the PZT films deposited using the PbO/PZT dual target were better than those of films deposited using the Pb/PZT dual target, because the former films had a higher bonding energy.  相似文献   

19.
Abstract

Using a combination of pulsed laser deposition and sol-gel processing, we have fabricated epitaxial PbZr0.2Ti0.8O3/YBa2Cu3O7-x heterostructures on single crystalline [001] LaAlO3. Rutherford back-scattering studies show the composition to be the same as the nominal starting composition. Transmission electron microscopy shows the existence of a randomly oriented polycrystalline microstructure in the PZT layer with a grain size of about 500–1000Å. Microscopic pores were also observed in the PZT layer. The PZT film exhibits ferroelectric hysteresis with a saturation polarization of 22–25μC/cm2 (at 7.5V, 1kHz), a remanence of 5–6μC/cm2 and a coercive field of about 40kV/cm.  相似文献   

20.
Abstract

A silicon-based PbTiO3/Pb(Zr,Ti)O3/PbTiO3 (PT/PZT/PT) sandwich structure with Pt electrodes are prepared by a sol-gel method. Effects of the PT buffer layers to the phase formation of the PZT films are studies. Dielectric and ferroelectric properties of the sandwich structure are measured. Maximum dielectric constant of about 900 is obtained at the coercive field 20 kV/cm. The leakage current density is less than 5 × 10?9 A/cm2 below 200 kV/cm, which is much lower than that of PZT/PT structure. And there is almost no fatigue even after 5 × 109 read/write cycles for the PT/PZT/PT sandwich structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号