首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hot-gas flow and particle transport and deposition in an industrial filtration system are studied. The special example of the Siemens-Westinghouse filter vessel at the Power System Development Facility at Wilsonville, Alabama is treated in detail. This tangential flow filter vessel contains clusters of 91 candle filters, which are arranged in two tiers. The upper tier containing 36 candle filters is modeled by six equivalent filters. Seven equivalent filters are used in the computational model to represent the 55 candle filters in the lower tiers. The Reynolds stress turbulent model of FLUENT™ code is used, and the gas mean velocity and root mean square fluctuation velocities in the filter vessel are evaluated. The particle equation of motion used includes drag and gravitational forces. The mean particle deposition patterns are evaluated and the effect of particle size is studied. The computational results indicatethat large particlesof the order of 10 μm or larger are removed from the gas due to the centrifugal forces exerted by rotating flow between the shroud and the refractory.  相似文献   

2.
In this paper the effect of design alternation on the particle transport and deposition in industrial hot-gas filter vessels are studied. Particular attention was given to the Siemens—Westinghouse filter vessel at the Power Development Facility, Wilsonville, AL, USA. The gas flow and particle deposition patterns for the current vessel are first evaluated. It is shown that in the present vessel, the majority of large particles (10–30 μm) are removed from the gas stream in the shroud. Then, three alternative filter vessel designs including using a short shroud, one with no shroud and a vessel with a deflector plate are considered. The effects of design alternations on the gas flow and transport and deposition of particles of different sizes are evaluated. The simulation results suggest that it is possible to modify the shroud in a way to allow large particles to deposit on the filters. Thus, the back-pulse process could more easily remove the filter cake.  相似文献   

3.
冷喷涂中氮和氦混合气体对颗粒加速作用的模拟研究   总被引:1,自引:0,他引:1  
采用FLUENT软件数值模拟氮和氦混合气体在拉伐尔喷管内对颗粒的加速过程,并与一维等熵定常流动理论值进行比较,同时研究混合气体中氦气含量对喷管出口处气体以及颗粒的速度和温度的影响。结果表明:喷管中气体参数的模拟值和一维理论值比较吻合,可以预计颗粒的出口参数,指导冷喷涂工艺。随着混合气体中氦气含量的升高,气体和颗粒的出口速度不断提高,温度不断降低,但速度和温度的变化率不断减小,在氮气中加入少量氦气可以提高气体和颗粒的出口速度,同时避免了全部使用氦气加速时的高成本。  相似文献   

4.
The primary fluid in a steam-jet vacuum pump is not assumed as a perfect gas as general research in the present study. A mathematic model based on the wet steam model for transonic flow is proposed to investigate the flow behaviours of primary fluid in the nozzle of a steam-jet vacuum pump. The simulation based on a wet steam model was carried out to predict the flow characteristics of primary fluid along the nozzle axis by a commercial computational fluid dynamics (CFD) code (FLUENT6.3). The simulation results showed that there was spontaneous condensation as the supersonic flow passing through the nozzle and the simulation results had a good agreement with the experimental data. It is found from the numerical simulation results that the steam flow characteristics in nozzle are quite different from a wet steam model and a perfect gas assumption: the outlet pressure of the nozzle predicted in the present study is higher than that as the primary fluid assumed as perfect gas, the outlet velocity is about 10% lower than that as the primary fluid assumed as a perfect gas, and the temperature at the outlet of the nozzle is much higher than that as the primary fluid assumed as a perfect gas. The simulation results demonstrate that the thermo-positive process due to steam condensation would hinder the supersonic expanding flow process in nozzle and depress the efficiency of the nozzle which would affect the pumping performance of steam-jet pump.  相似文献   

5.
This paper considers issues connected with the simulation of the motion and heat exchange of disperse impurity particles in nonisothermal gas and lowtemperature plasma jets under the action of turbulent pulsations of the carrier flow. The influence of the outflow conditions, the initial parameters of the phases, and the conditions of particle injection into a jet flow on the laws of impurity scattering and heat exchange are investigated. The results of the numerical calculations are compared with the data obtained without taking into account the influence of turbulent pulsations on the particle motion.  相似文献   

6.
The present work describes a computer simulation study of gas flow and particle transport and deposition in a pilot-scale furnace with cooling system. The Gambit code is used to generate the geometry and the computational grid. An unstructured mesh is generated for the pilot-scale boiler. The FLUENT code is used for evaluating the gas mean velocity, turbulence fluctuation energy, and mean pressure, as well as temperature fields and chemical species concentrations. The particle equation of motion includes the nonlinear drag, gravity, Brownian, lift, and thermophoretic forces. The gas velocity and thermal conditions in the furnace are studied. Ensembles of particle trajectories are generated and statistically analyzed. Particle deposition rates on different walls are evaluated, and the effect of particle size is studied.  相似文献   

7.
鱼灏  瞿前进  康宁波 《包装工程》2023,44(17):174-180
目的 针对现有的气体置换装置存在工作过程中气体置换精度不高、置换率低、内部流场复杂紊乱等问题,对DF-520型气调包装机气体置换装置结构进行了改进以及内部流场数值模拟。方法 运用FLUENT软件在进口压力为20 kPa,混配O2体积分数为2%、CO2体积分数为28%、N2体积分数为70%的边界条件下对新旧2种换气装置进行数值模拟和对比分析,进一步通过样机试验对比分析2种模型的气体置换率和气体置换精度。结果 数值模拟结果表明,与旧构型相比,新构型置换腔内部气体流速较平均、强流区面积小、漩涡区少、气体流向一致性高、气体置换速度快;样机试验结果表明,新旧构型气体置换装置平均气体置换率分别为99.2%和95.6%,新构型目标气体体积分数标准差、平均相对偏差以及变异系数更小。结论 本研究表明,优化后的气体置换装置气流分布更稳定,置换精度达到设计要求,工作效率更高,适用于气调包装机的包装工作,能为后续研究提供思路。  相似文献   

8.
应用基于有限体积法的FLUENT6.1计算软件对管道中单钝体的燃气绕流现象进行了仿真研究,即对实现管道燃气流量计量的DN200mm新型宽量程流量计的流场进行了数值模拟,就燃气计量管道中漩涡发生体的漩涡脱落频率与实测数据进行了比较。结果表明,数值计算结果与实测结果具有很好的一致性,从而提出了在新型燃气流量计的研制中可以应用数值模拟方法来优化流量计结构设计的结论。  相似文献   

9.
Simultaneous transport in soil of heat, water, potassium chloride, and benzene was studied experimentally and numerically. A laboratory experiment permitted observation of temperature, water content, chloride concentration and benzene concentration distributions in soil. A numerical model based upon newly developed transport theory was used to simulate the observed data. Transport of benzene in soils was simulated numerically under isothermal and nonisothermal conditions. Simulated results for benzene were compared with experimental data. Experiments were conducted in sealed aluminum columns (0.05-m I.D. and 0.20-m length) with sterilized salinized unsaturated Fayette soil. The soil had initial water content of 0.22 m(3)/m(3) and initial inorganic solute concentration of 0.20 mol/kg. Benzene was injected at one end of each soil column (top end) to provide 143 g/m(3)gas. The results of this study indicated that transport models need to include the effect of temperature and temperature gradient to describe the movement of volatile chemicals in soils.  相似文献   

10.
The aim of the present study is the simulation of the dispersion of natural gas issuing from the silencer of compressor stations during vent operations. The objective is to analyze the dispersion of the gas emitted under different conditions of mass flow rate at the exit and ambient cross-flow velocity. We have considered a silencer with an upper cover to protect it from the rain and the fall of objects. The influence of the upper cover of the silencer on the dispersion of natural gas has also been studied, and non-dimensional approaches of the model have been proposed to simplify the problem. Seven different cases have been solved, using two models: a 3D model based on the commercial code FLUENT, and a simplified quasi-one-dimensional model. The results obtained in both cases have been compared, and the range of validity of the one-dimensional model in non-dimensional form has been discussed.  相似文献   

11.
An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., ~50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.  相似文献   

12.
为研究600 MW超临界W火焰锅炉翼墙上部结渣原因,进行试验研究。从炉内检查发现的结渣位置和试验测试结果分析炉内的流场情况。结果表明:下炉膛上部翼墙区域温度达到1 300℃以上,高于入炉煤软化温度;氧浓度低,CO浓度在10 000 μL/L以上,呈强还原性气氛,存在明显的结渣倾向;同时分析燃烧器下方与翼墙之间存在侧面向上的涡流,将熔融状态的煤灰颗粒带至翼墙上部墙面,这种特殊的流场是造成翼墙上部结渣的主要原因。结合试验分析结果,有针对性地采取燃烧调整、燃烧器喷口布置优化、防结焦风优化等措施,解决W火焰锅炉下炉膛严重结渣的问题,锅炉运行可靠性得到明显提高。  相似文献   

13.
为了研究不同体积分数的氢气 空气混合气体的燃爆压力及压力上升速率,采用20 L球形容器进行实验研究,并利用Fluent软件基于Navier-Stokes方程组以及k-ε湍流模型进行数值模拟研究。通过数值模拟研究氢气燃爆过程中的压力变化、温度分布及火焰传播过程,得到的模拟结果和实验结果基本吻合。结果表明,随着氢气体积分数的增加,最大燃爆压力呈现先增大后减小的趋势,在氢气体积分数为30%时达到最大,为0.761 5 MPa;升压速率最快,为0.299 2 MPa。数值模拟获得了燃爆过程不同时刻的可燃气体组分质量浓度分布、压力场、温度场和气流速度矢量,为实际应用中防爆、抑爆提供了理论依据。  相似文献   

14.
The role of initiators with different reactivities on the process cycle of nonisothermal resin transfer molding (RTM) was examined using the numerical simulation. A new process model was developed based on flow, heat and mass transfer equations combined with an appropriate mechanistic kinetics model which elucidates the functions of the initiators in the system. The process cycle of RTM with both single initiator and dual-initiator (combination of two initiators) was analyzed. The numerical simulations revealed that the single initiator with high reactivity reduces the cycle time, but there is a risk of incomplete mold filling and nonuniform temperature distribution. For dual-initiator system different scenarios of initiators injection including premixed initiators, switching the initiator at a given cavity filled fraction and ramped injection of highly reactive initiator were examined. It was found that the dual-initiator system leads to reduced cycle time and improved temperature distribution with no risk of incomplete filling.  相似文献   

15.
Numerical and experimental analysis was carried out to examine the heat transfer and pressure drop characteristics of welded type plate heat exchangers for absorption application using Computational Fluid Dynamics (CFD) technique. The simulation results based on CFD are compared with experimental results. A commercial CFD software package (FLUENT) has been used to predict the characteristics of heat transfer, pressure drop and flow distribution within the plate heat exchangers. In this paper, a welded plate heat exchanger with a plate of chevron embossing type was tested by controlling mass flow rate, solution concentration, and inlet/outlet temperatures. The working fluid is H2O/LiBr solution with the LiBr concentration of 54–62% in mass. The numerical simulation examines the internal flow patterns, temperature distribution and the pressure distribution within the channel of the plate heat exchanger. Three plates of embossing types; chevron embossing, elliptic and round, are proposed and simulated in this paper. The simulation results show reasonably good agreement with the experimental results. Also, the numerical results show that the plate with the elliptical shape gives better performance than the plate of the chevron shape from the viewpoints of heat transfer and pressure drop.  相似文献   

16.
梁文宏  刘凯  崔亚辉 《工程力学》2016,33(5):220-226
搅油损失的影响因素包括润滑油的运动粘度、工作温度,齿轮的模数、齿数、齿宽,旋转速度、齿轮的浸油深度,当地重力数值等,多种因素并存且形成了复杂的函数关系,难以直接用理论确定解析解。在对上述各种影响进行分析的基础上使用流体力学中边界层理论对齿轮搅油功率损失进行了理论分析,使用FLUENT软件中的多相流VOF模型、涡流Kε模型对建立的搅油流动偏微分方程进行数值仿真计算分析,最后通过齿轮搅油功率损失实验对仿真结果进行了验证。分析结果表明,在低转速条件下使用仿真计算的方法可以有效地预测搅油功率损失数值。  相似文献   

17.
王志坚  尚晓峰 《真空》2012,49(1):83-86
本文采用标准的k-ε三维紊流模型,利用FLUENT软件对喷嘴型真空高压气淬炉中空炉冷态流场和工件满装炉量下气固耦合流动传热过程进行了数值模拟计算.建立了符合实际的控制方程和简化物理模型,对空炉冷态下炉内的气体流动特征点进行流速测量,通过实测值与计算机模拟结果进行对比,验证了流场模拟计算的准确性和适用性;预测了满炉状态下炉区内的气体流动和工件温度分布,实测了指定工件的冷却曲线,比模拟冷却时间慢,误差在10%以内.  相似文献   

18.
This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French–German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.  相似文献   

19.
蓄冷球凝固的FLUENT数值模拟研究   总被引:5,自引:0,他引:5  
利用计算流体力学软件FLUENT凝固/熔化模型对一种相变材料蓄冷球的凝固过程进行数值模拟研究,得到了在第一类边界条件下蓄冷球凝固过程的温度场分布、相界面移动规律,并分析了凝固时间与壁面温度和球径的关系。所得到的结论对相变问题的数值模拟以及相变蓄能装置的设计具有重要的参考价值。  相似文献   

20.
RH真空精炼吹氩参数对循环流动影响的数值分析   总被引:1,自引:1,他引:0  
为研究RH真空脱气过程中的流动行为,建立了描述气泡驱动下的RH循环气-液两相流动的数学模型.基于欧拉-欧拉两流体模型,利用计算流体力学(CFD)商业软件FLUENT6.0,对不同充气量条件下的循环流量进行了预测.计算结果与实验数据的比较表明两者具有较好的一致性.应用该模型对充气压强与循环流量、充气量与上升管内气相及液相速度分布关系进行了数值模拟,用以理解其中的流动规律,为工程技术改进提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号