首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom‐built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto‐optic tunable filter to provide continuously tunable fluorescence excitation with a 1‐nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.  相似文献   

2.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

3.
A confocal scanning light microscope coupled to the Daresbury Synchrotron Radiation Source is described. The broad spectrum of synchrotron radiation and the application of achromatic quartz/CaF2 optics allows for confocal imaging over the wavelength range 200–700 nm. This includes UV light, which is particularly suitable for high-resolution imaging. The results of test measurements using 290-nm light indicate that a lateral resolution better than 100 nm is obtained. An additional advantage of the white synchrotron radiation is that the excitation wavelength can be chosen to match the absorption band of any fluorescent dye. The availability of UV light for confocal microscopy enables studies of naturally occurring fluorophores. The potential applications of the microscope are illustrated by the real-time imaging of hormone traffic using the naturally occurring oestrogen coumestrol. (The IUPAC name for coumestrol is 3,9-dihydroxy-6H-benzofuro[3,2-c][1]benzopyran-6-one ( Chem. Abstr. Reg. No . 479-13-0). The trivial name will be used throughout this paper.)  相似文献   

4.
Scanning luminescence X-ray microscopy is based on the use of the very small focused probe of a scanning X-ray microscope to stimulate visible light emission from phosphors and dyes. Using an undulator X-ray source and a Fresnel zone plate to produce a focused X-ray probe, images of P31 phosphor grains with a resolution of 50–75 nm have been obtained, and luminescence from polystyrene spheres loaded with 50–100 μmol/g of fluorescent dye has been imaged. The resolution was not limited by the focused X-ray probe (the microscope has imaged features at 36-nm spacing in transmission mode) but by dark noise and the low net efficiency of the luminescence detection system used for this investigation. This technique may make it possible to image dye-tagged sites of biochemical activity at the resolution of the X-ray microscope in wet, unsectioned, and unfixed cells, especially with soft X-ray optimized dyes. Because the image is formed from the detection of signal against a dark background, calculations suggest that the radiation dose for luminescence imaging of dye-tagged features should be 2–22 times lower than it is in transmission X-ray microscopy. A possible extension of the technique for three-dimensional imaging at the transverse resolution of the X-ray microscope is described, where visible light collection optics might be used to obtain submicrometre axial resolution.  相似文献   

5.
针对彩色共焦距测量系统中测量范围和分辨率的调制问题,采用色散和聚焦功能分离的思路设计了一款色散物镜,其色散功能由纯球面折射透镜组成的色散管镜来实现,聚焦功能则采用商业物镜实现。使用ZEMAX软件对色散管镜的结构、材料及像差进行了设计及优化,仿真结果显示所设计的色散管镜在可见光范围内能获得优于230mm的轴向线性色散,实际加工的成品管镜的轴向线性色散范围可达160mm。实验测量了色散管镜及它结合不同聚焦物镜后的色散特性。实验结果表明,色散管镜结合不同聚焦能力的物镜能够具有高线性度的轴向色散区域;结合4倍和10倍放大倍率的商用物镜,分别获得了1 300μm和225μm的测量范围,其轴向分辨率分别为2μm和0.4μm,实现了测量范围和分辨率的调制。  相似文献   

6.
In confocal microscopes, whenever a broadband light source is used, or when excitation and detection are performed at different wavelengths, for example in fluorescence, then the influence of microscope objective chromatism on the degree of confocality is very important. With poorly corrected objectives, depth of field will be increased and in the case of fluorescence the image may be lost altogether. Presented here are observations with truly achromatic reflecting objectives and with the same objectives modified by introduction of a known amount of chromatic aberration. The results should encourage manufacturers to consider development and production of both reflecting microscope objectives and refractive lenses with more carefully designed/controlled chromatic aberration.  相似文献   

7.
Shingo Kashima 《Scanning》1995,17(2):66-69
We have developed a legitimate fluorescence con-focal scanning microscope (CLSM) using a near ultraviolet (UV) laser. This system has almost no chromatic aberration from the near UV region to the visible region (350–600 nm), and the objectives are designed as water-immersion type. Therefore this system provides the high-quality fluorescence image excited by the near UV laser, and high-quality image of deep points in a sample.  相似文献   

8.
The bilateral scanning approach to confocal microscopy is characterized by the direct generation of the image on a two-dimensional (2-D) detector. This detector can be a photographic plate, a CCD detector or the human eye, the human eye permitting direct visualization of the confocal image. Unlike Nipkow-type systems, laser light sources can be used for excitation. A design called a carousel has been developed, in which the bilateral confocal scan capability can be added to an existing microscope so that rapid exchange and comparison between confocal and non-confocal imaging conditions is possible. The design permits independent adjustment of confocal sectioning properties with lateral resolutions better than, or, in the worst case equivalent to, those available in conventional microscopy. The carousel can be considered as a stationary optical path in which certain imaging conditions, such as confocality, are defined and operate on part of the imaging field. The action of the bilateral scan mirror then extends this image condition over the whole field. A number of optical arrangements for the carousel are presented which realize various forms of confocal fluorescence and reflection imaging, with point, multiple point or slit confocal detection arrangements. Through the addition of active elements to the carousel direct stereoscopic, ratio, time-resolved and other types of imaging can be achieved, with direct image formation on a CCD, eye or other 2-D detectors without the need to modify the host microscope. Depending on the photon flux available, these imaging modes can run in real-time or can use a cooled CCD at (very) low light level for image integration over an extended period.  相似文献   

9.
A tandem scanning confocal microscope (TSCM) is currently being used to obtain high-resolution images of the human cornea in vivo. Advantages of confocal microscopy for in vivo imaging include optical sectioning and increased contrast through removal of scattered light. We have adapted the TSCM to view the retina in vivo by constructing an applanating lens and fitting the microscope with an imaging-intensifying camera of increased sensitivity. The microscope uses a spinning disc with 40,000 holes, each of 30 microns diameter, and a 100 W mercury arc lamp light source with a 455 nm long pass filter. The applanating lens is composed of three elements, two of which are movable for focusing. Images of a rabbit retina were obtained in vivo revealing the nerve fiber layer and blood vessels around the optic disc. The power density at the retina was calculated to be 3 mW/cm2, which is well below the power levels of a direct or indirect ophthalmoscope. Magnification of the retinal image was approximately 60x and a 1 mm wide area of retina was in view. This prototype TSCM system demonstrates that images of a retina in vivo are obtainable with confocal microscopy and that the sharpness is comparable to standard fundus camera photography. Further modifications to improve the light level and alterations in the design of the objective should improve the quality of the images obtained and achieve the enhanced resolution of which, in theory, the confocal microscope is capable.  相似文献   

10.
A method for evaluating the performance of microscope objectives on two types of confocal scanning optical microscope is presented. Of these two confocal microscope types, off-axis beam-scanning systems are found to require microscope objectives which have been corrected for flatness of field as well as for spherical aberration and astigmatism in order to obtain maximum axial and laterial resolution. In the case of on-axis specimen-scanning microscopes, less highly corrected objective lenses (not corrected for flatness of field) may in practice prove to have superior resolving properties.  相似文献   

11.
Two miniaturized fibre‐coupled modules for light sheet‐based microscopy are described and compared with respect to image quality, chromatic aberration and beam alignment. Whereas in one module the light sheet is created by an achromatic cylindrical lens, reflection by a spherical mirror and concomitant astigmatic distortion are used to create the light sheet in the second module. Test experiments with fluorescent dyes in solution and multicellular tumour spheroids are reported, and some details on construction are given for both systems. Both modules are optimized for imaging individual cell layers of 3D biological samples and can be adapted to fit commercial microscopes.  相似文献   

12.
We describe a novel method of characterizing the longitudinal chromatic aberration of microscope objectives by recording a series of axial responses as a function of wavelength as a plane reflector is scanned through the focal region of a confocal microscope. Measurements are presented for a variety of objectives with differing degrees of correction. The use of the chromatic focal shift to measure surface profiles is also discussed.  相似文献   

13.
The tandem scanning microscope permits confocal images to be obtained in real time and viewed directly by eye. The light budget of these instruments may be increased from a few percent to a few tens of percent by incorporating an array of microlenses so as to increase the amount of illumination light that reaches the specimen. These instruments are configured for fluorescence imaging together with laser illumination. We describe how the versatility of the instrument may be enhanced to permit the use of incoherent light sources as well as extending the imaging modes to include bright‐field reflection.  相似文献   

14.
Bleach rate imaging on a (cooled) CCD can be easily achieved using a confocal microscope with bilateral scanning and detection coupled to a workstation; it is as easy as acquiring regular fluorescence images. Several analysis and display methods for bleach rate imaging are presented such as the bleach map (and its inverse) and a matrix-based decomposition method for multi-labelled specimens based on the bleach rate differences between the dyes used. With these tools, bleach-rate-based imaging can become a viable alternative to multiple labelling techniques for component identification in fluorescent specimens.  相似文献   

15.
A confocal laser microscope scanner developed at our institute is described. Since an ordinary microscope is used, it is easy to view the specimen prior to scanning. Confocal imaging is obtained by laser spot illumination, and by focusing the reflected or fluorescent light from the specimen onto a pinhole aperture in front of the detector (a photomultiplier tube). Two rotating mirrors are used to scan the laser beam in a raster pattern. The scanner is controlled by a microprocessor which coordinates scanning, data display, and data transfer to a host computer equipped with an array processor. Digital images with up to 1024 × 1024 pixels and 256 grey levels can be recorded. The optical sectioning property of confocal scanning is used to record thin (~ 1 μm) sections of a specimen without the need for mechanical sectioning. By using computer-control to adjust the focus of the microscope, a stack of consecutive sections can be automatically recorded. A computer is then used to display the 3-D structure of the specimen. It is also possible to obtain quantitative information, both geometric and photometric. In addition to confocal laser scanning, it is easy to perform non-confocal laser scanning, or to use conventional microscopic illumination techniques for (non-confocal) scanning. The design has proved reliable and stable, requiring very few adjustments and realignments. Results obtained with this scanner are reported, and some limitations of the technique are discussed.  相似文献   

16.
In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two‐photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy‐to‐operate platform capable to perform two‐photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
光谱共焦位移传感器是一种高精度、非接触式位移传感器。本文讨论了光谱共焦法用于位移测量的基本原理,用Zemax光学设计软件完成了一个镜头组的设计,并给出了光谱共焦位移传感器镜头组的设计方法以及像差分析。该镜头组采用密接透镜结构,工作波段为486.13nm-656.27nm,测量范围约为91μm,轴向响应FWHM优于5μm。通过线性回归分析得出波长与位移间判定系数为0.99523,在测量范围内,位移与波长间的线性关系较好。  相似文献   

18.
Alvarez lenses are actuated lens‐pairs which allow one to tune the optical power by mechanical displacement of subelements. Here, we show that a recently realized modified Alvarez lens design which does not require mechanical actuation can be integrated into a confocal microscope. Instead of mechanically moving them, the sublenses are imaged onto each other in a 4f‐configuration, where the lateral image shift leading to a change in optical power is created by a galvo‐mirror. The avoidance of mechanical lens shifts leads to a large speed gain for axial (and hence also 3D) image scans compared to classical Alvarez lenses. We demonstrate that the suggested operation principle is compatible with confocal microscopy. In order to optimize the system, we have drawn advantage of the flexibility a liquid‐crystal spatial light modulator offers for the implementation. For given specifications, dedicated diffractive optical elements or freeform elements can be used in combination with resonant galvo‐scanners or acousto‐optic beam deflectors, to achieve even faster z‐scans than reported here, reaching video rate.  相似文献   

19.
Booth  Hell 《Journal of microscopy》1998,190(3):298-304
We report on efficient two-photon fluorescence imaging in beam scanning microscopy by exciting UV dyes at the 647-nm line of a continuous wave ArKr mixed gas laser. For a numerical aperture of 1.4 (oil), we used an illumination power of up to 210 mW at the sample. High-resolution images were obtained for DAPI-labelled cell nuclei within 4–60 s. Our method is a simple two-photon alternative to UV confocal imaging with the potential of becoming a very useful feature of laser scanning microscopy.  相似文献   

20.
To examine many of the imaging capabilities of confocal scanning laser microscopes rapidly and reliably over the whole field of view three simple, easily prepared specimens are required: a mirror positioned on a carefully measured shallow gradient, a film of highly fluorescent material and a rectangular grid with a readily defined centre. Using these specimens the adjustment of any combination of confocal scanning laser visualization system and light microscope can be examined throughout the field of view. The effects of misalignment of the various subcomponents of a confocal scanning laser microscope on both the axial spread function of a plane and the shading pattern over the image field are described. Finally, where the design of the confocal optics permits, the three specimens can be used to facilitate the alignment of the various components to the optimal level achievable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号