首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A lipase‐catalyzed enantioselective esterification process in cyclohexane was developed for the synthesis of S(+)‐naproxen ester prodrugs containing the moiety of N,N‐dialkylamino, ethylene glycol or alkyl ether of ethylene glycol. A high enantiomeric ratio of 44 was obtained when di(ethylene glycol) was selected as the best acyl acceptor. A reversible ping‐pong Bi Bi mechanism has been employed to elucidate the enzymatic behavior of the initial conversion rate for S(+)‐naproxen and the time‐course conversions for both enantiomers. Improvement of the enzyme activity was demonstrated when alcohol in excess of its cyclohexane solubility limit was used. The application of excess racemic naproxen in the presence of solid substrate suspensions showed enhanced productivity and enantioselectivity for the desired S(+)‐ester. Studies of the recovery and racemization of the remaining R(−)‐naproxen are also reported. © 1999 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The enantiomers of N‐hydroxymethyl vince lactam are important intermediates during the synthesis of chiral drugs. The preparation of its single enantiomer can be performed through enzymatic resolution. The aim of this work is to obtain (1S, 4R)‐N‐hydroxymethyl vince lactam with high enantiomeric purity via lipase‐catalyzed enantioselective transesterification in organic solvents. To achieve this, effects of various reaction conditions (including lipase sources, acyl donor, substrate molar ratio, organic solvent, temperature, and water activity) on the enzyme activity as well as enantioselectivity were investigated. RESULTS: The results of the study showed that the enantiopreference for all the selected enzymes was (4S, 1R)‐N‐hydroxymethyl vince lactam in enantioselective transesterification of racemic N‐hydroxymethyl vince lactam. Under the selected optimum conditions, the highest enantioselectivity (E = 33.8) was obtained with a higher enzyme activity (20.3 µmol g?1 min?1) for Mucor miehei lipase (MML) when vinyl valerate was used as the acyl donor. Besides, the remained (1S, 4R)‐N‐hydroxymethyl vince lactam with high enantiomeric purity (ee > 99%) was obtained when the conversion was about 60%. CONCLUSION: The results obtained clearly demonstrated potential for industrial application of lipase in resolution of N‐hydroxymethyl vince lactam through enantioselective transesterification. © 2012 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The hydrophobic phenyl n‐propyl ketone was used as a model compound to examine alcohol dehydrogenase activity in Saccharomyces cerevisiae mediated cell culture. Parameters such as pH, hexane‐to‐water volume percentage, and the amount of cofactor Zn2+ ion for either cell growth or reduction were studied to see their effect on the enantioselectivity toward the product R‐(+)‐ or S‐(?)‐1‐phenyl‐1‐butanol. RESULTS: The pH for cell growth in aqueous culture was 7.0, while the pH for reduction in the aqueous portion of the biphasic culture was 5.0. Without Zn2+ ion the biphasic cultures of middle to high hexane‐to‐water volume percentage exhibited an R‐(+)‐1‐phenyl‐1‐butanol enantiomeric excess of 53.7% to > 99%. Without Zn2+ ion the biphasic cultures at low hexane‐to‐water volume percentage possessed an S‐(?)‐1‐phenyl‐1‐butanol enantiomeric excess of 14.5–46.5%. Exclusively, the enantioselectivity for biphasic cultures containing Zn2+ ion was an S‐(?)‐1‐phenyl‐1‐butanol enantiomeric excess of 27.5% to > 99%. Reduction mediated in aqueous culture with varied amount of Zn2+ ion by the yeast Candida utilis also showed an S‐(?)‐1‐phenyl‐1‐butanol enantiomeric excess of 79.2–95.4%. CONCLUSION: The enantioselectivity of S. cerevisiae mediated biphasic culture reduction of phenyl n‐propyl ketone can be manipulated through the cofactor Zn2+ ion and the hexane volume percentage of the biphasic culture. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
The enantioselective esterification of racemic 1-trimethylsilylethanol with acids catalyzed by lipase in organic solvent was successfully performed. The influence of some factors on the reaction was investigated. Among the four lipases explored, Candlda rugosa lipase (CRL) showed the highest activity and enantioselectivity. Octanoic acid was the best acyl donor among the eleven acids studied and n-hexane was the most suitable medium for the reaction. The optimum shaking rate and temperature were found to be 150 r-rain-i and 20~(3 to 30~C, respectively.The enantiomeric excess of the remaining (S)-(-)-1-trimethylsilylethanol was 93% when substrate conversion was 53% upon incubation of the reaction mixture at 30~C, 150 r-rain-i for 12 h.  相似文献   

5.
有机相中酶催化1-苯基乙胺的不对称酰胺化反应   总被引:1,自引:0,他引:1       下载免费PDF全文
徐刚  戴军强  吴坚平  杨立荣 《化工学报》2007,58(7):1741-1745
在有机相中,对酶催化条件下的1-苯基乙胺酰胺化反应进行了研究。通过对酰基供体、酶、溶剂的筛选和酯量、底物胺浓度、酶量、摇床转速、反应温度等影响因素的考察,发现乙酸异丙烯酯为较佳的酰基供体,脂肪酶Novozym 435对该反应的催化活性和对映体选择性较高,甲苯为最适的介质,最适酯量为底物胺量的0.6倍,最佳底物胺浓度、酶量、摇床转速、温度分别为200 mmol·L-1、4 mg·ml-1、200 r·min-1、30℃。在此优化条件下反应的对映体选择率(E)达到89。反应4 h转化率为39%,产物的对映体过剩值(eep)为96%;反应10 h转化率达到52.4%,底物的对映体过剩值(ees)为98%。  相似文献   

6.
The kinetic resolutions of rac‐1‐phenylethanol and rac‐2‐pentanol by transesterification with vinyl esters catalysed by a commercial immobilised Candida antarctica lipase B were successfully carried out in hexane medium. This enzyme showed very high enantioselectivity for both substrates. The influence of the water content of the medium on the synthetic activity, selectivity and enantioselectivity of the enzyme was analysed, with the optimal amount of water about 100 ppm. Our results also showed that the activity per gram enzymatic derivate of CaLB was slightly higher with butyl butyrate as acyl donor.  相似文献   

7.
A new polymerizable 1,1′‐bi‐2‐naphthol derivative for polymer‐supported catalytic asymmetric synthesis is presented. The synthesis is conducted within a single reaction step, which is a major advantage over other approaches presented in the literature. The ligand‐bearing polymer is prepared through copolymerization with N‐isopropylacrylamide. Preliminary experiments on the utility in catalytic asymmetric alkylation reactions reveal the accessibility and activity of the polymer‐attached catalysts. The stereoselectivity of the reaction is found to be somewhat lower than for reactions performed in the presence of free 1,1′‐bi‐2‐naphthol, and thus requires further optimization. The enantiomeric excess of the reaction products was determined via 1H NMR spectroscopy after chiral derivatization with (R)‐α‐methylbenzyl isocyanate. © 2015 Society of Chemical Industry  相似文献   

8.
Novozyme435 facilitated kinetic resolution of 2-heptylamine was here presented. Methyl methoxyacetate was used as acyl donor. A survey of influencing factors including hydrogen bonding effect, solvent effect, steric effect, temperature and the amount of acyl donor were investigated in detail. At the optimum conditions, the enantiomeric separation was successfully obtained within 8 h at 20 °C, and gave high conversion and optical purity of (R)-2-heptylamine, 48.9% and over 99% respectively. The immobilized lipase B was found to be suitable for the enantiomeric separation of aliphatic amines with good recyclability.  相似文献   

9.
Isolation of a novel microbial lipase (EC 3.1.1.3) having specific catalytic activity for the synthesis of optically pure 2‐O‐benzylglycerol‐1‐acetate, the building block for the preparation of many β‐blockers, phospholipase A2 inhibitors and other biologically active compounds was the aim of this investigation. A Pseudomonas (strain G6), recently isolated from soil, produced an extracellular lipase. SDS–PAGE analysis showed that the lipase protein was a hexamer. The molecular weight of the sub‐units of the lipase protein were 10, 19, 29, 30, 47 and 53. The catalytic activity of the lipase was exploited for the synthesis of 2‐O‐benzylglycerol‐1‐acetate from 2‐O‐benzylglycerol through transesterification using vinyl acetate as acylating agent. High selectivity of the lipase towards the monoacetate product was demonstrated. A 97% enantiomeric excess (ee) of S(+)‐2‐O‐benzylglycerol‐1‐acetate was obtained when the reaction was carried out at room temperature with shaking. The lipase was highly active in anhydrous organic microenvironments and in non‐polar organic solvents with log P values above 2.5. © 2002 Society of Chemical Industry  相似文献   

10.
The [2+2]‐cycloaddition reaction between ethyl glyoxylate and trimethylsilylketene is reported. Enantiomeric excesses up to 83% have been achieved with the use of only 1.0 mol % of a previously unreported chiral imidazolidinone‐ligated dirhodium(II) carboxamidate catalyst. An extensive survey of chiral catalysts has shown that enantiocontrol for cycloaddition increases as the steric bulk of the ligand is increased. However, enantioselectivity is increased to 99% ee by the addition of 10 mol % of quinine as a co‐catalyst with a chiral dirhodium(II) azetidinone‐ligated catalyst, and there is a significant decrease in reaction time.  相似文献   

11.
The first asymmetric conjugate addition of mercaptans to β‐substituted‐β‐trifluoromethyl oxazolidinone enoates has been developed. The opposite enantiomers of adducts, containing a trifluoromethylated hetero‐quaternary stereogenic centers, could be obtained by utilizing two pseudo‐enantiomeric Cinchona alkaloid‐derived tertiary amine/squaramides as catalysts. Potassium dihydrogen phosphate was found to accelerate the reaction rate without compromising the enantioselective excess. A variety of chiral trifluoromethylated tertiary thioethers and thiols were readily prepared with excellent enantioselectivity.

  相似文献   


12.
BACKGROUND: In the present study, the kinetic resolution of rac‐1‐phenylethanol by transesterification with several vinyl esters catalysed by a commercial immobilized Candida antarctica lipase B (Novozym 435) was carried out in n‐hexane at different water contents. The subtrates and products involved in the kinetic resolution were separated using a membrane bioreactor containing a supported liquid membrane based on the ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim+][BF4?]. RESULTS: Variables affecting the kinetic resolution performance of the enzyme were studied. First, the influence of water content of the medium on the synthetic activity, selectivity and enantioselectivity of the enzyme was analysed in order to establish the optimal amount of water. The use of vinyl esters of different alkyl chain length (vinyl propionate, vinyl butyrate and vinyl laurate) as acyl donors to kinetic resolution was studied. Finally, the integrated reaction/separation process for the resolution of rac‐1‐phenylethanol was carried out in the optimal conditions found. CONCLUSION: These investigations demonstrate that the coupling of lipase enantioselectivity with the selective separation of supported liquid membranes based on ionic liquids provides a promising basis for practical production of enantiomerically pure or enriched compounds. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
The first example of a highly enantioselective organocatalytic aziridination of α‐substituted α,β‐unsaturated aldehydes is presented. The reaction is catalyzed by simple chiral amines and gives access to highly functional terminal azirdines containing an α‐tertiary amine stereocenter in high yields and enantiomeric ratios (95.5:4.5–98:2).  相似文献   

14.
In the present investigation a Lipase producing strain, Bacillus subtilis (MTCC‐121) was grown on various media containing different sources of carbon, nitrogen and other nutrients. The best media found for the production of lipase was M2 media containing 0.4% peptone, 0.2% beef extract and 1% NaCl. Lipase produced from this culture was used for the kinetic resolution of racemic acetyl‐1‐phenyl ethanol and its derivatives, which are important as chiral auxiliaries and intermediates in the synthesis of natural products, pharmaceuticals and agrochemicals. The lipase resolved these substrates after 48 h with enantiomeric excess of 90–98% and conversion 40–48%. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Enantioselective membrane was prepared using ethyl cellulose (EC) as membrane material. The flux and permselective properties of membrane using aqueous solution of (R,S)‐2‐phenyl‐1‐propanol as feed solution was studied. The employed membrane process was a pressure driven process. All kinds of important conditions including preparation and operation of membranes were investigated in this experimentation. When the membrane was prepared with 18 wt % EC, 20 wt % N,N‐dimethylformamide in casting solution, 13 min evaporation time and 0°C temperature of water bath for the gelation of the membrane, and the operating pressure and feed solution of (R,S)‐2‐phenyl‐1‐propanol were 0.2 MPa and 1.5 mg/mL, respectively, over 90% of enantiomeric excess (e.e.) and 44.2 (mg/m2 h) of flux were obtained. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The resolution of methyl (±)‐3‐hydroxypentanoate catalysed by Candida antarctica lipase B has been performed by using ammonia and benzyl amine as nucleophiles. In all cases, the lipase reacts faster with the R enantiomer of the ester, but when benzyl amine is used, the enantiomeric ratio is approximately three times as high as that measured for ammonia. The analysis of the molecular dynamics simulations carried out over the corresponding deacylation transition state analogues indicated specular binding modes between enantiomers that vary greatly upon the nucleophile used. For the case of ammonia, an intramolecular hydrogen bond between the β‐hydroxyl group and the protons of the nucleophile is established. However, the presence of the substituent in benzyl amine disrupts this interaction. Instead, the acyl chain binds to a more restrictive area of the protein where the higher number of contacts established with the side chains of Thr40, Gln157 and Ile189 have been identified as the reason for the higher enantioselectivity observed in the aminolysis reaction.  相似文献   

17.
The palladium(II)‐BINAP‐catalyzed enantioselective carbonyl‐ene reactions between ten arylglyoxals and five alkenes were systematically investigated and demonstrated good to excellent enantioselectivities with high ee values of up to 93.8 %. The results showed that both arylglyoxals and alkenes exert evident effects on the enantioselectivity. Particularly, the ortho‐methyl substituents of the substrates could increase the enantioselectivity. The achieved excellent enantioselectivities may be due to the corresponding substrate matches well fitting the chiral space created by the chiral palladium(II)‐BINAP catalyst. The ortho‐methyl substituents may improve the fitting of the substrate match to the chiral space created by the chiral catalyst, hence the enantioselectivity is improved. When using dienes (1,4‐diisopropenylbenzene and 1,3‐diisopropenylbenzene) as substrates in this reaction, only one of the two carbon‐carbon double bonds participated into the reaction affording tetrafunctional organic compounds with moderate enantioselectivities of up to 83.8 % ee. The chiral Lewis acid palladium(II) catalyst incorporating (R)‐BINAP, which is a conformationally restricted chiral ligand, is very stable in ionic liquids and could be recycled 21 times with retention of the high enantioselectivity.  相似文献   

18.
BACKGROUND: The enantioselectivity of reduction of ethyl 2‐oxo‐4‐phenylbutyrate (EOPB) to synthesize ethyl (R)‐2‐hydroxy‐4‐phenylbutyrate ((R)‐EHPB) catalyzed with baker's yeast in diethyl ether can be improved by the introduction of alpha‐phenacyl chloride (PC). However, the toxicity of PC to the yeast results in a decrease in the catalytic activity of yeast. In order to overcome this limitation, four strategies for PC addition were designed. The effect of PC on the catalytic behavior of baker's yeast was studied using spectrum analysis of alcohol dehydrogenase from yeast (YADH). RESULTS: After being pretreated with PC according to Strategy 4, the pretreated baker's yeast possessed good catalytic activity and enantioselectivity for the reduction of EOPB to produce (R)‐EHPB. Under the optimum pretreatment conditions, the conversion of EOPB, the yield of EHPB and the enantiomeric excess of (R)‐EHPB reached 96%, 90% and 92%, respectively. Significant changes were observed in the UV absorption and fluorescence spectra of the YADH from the yeast pretreated by PC. CONCLUSION: The change of catalytic behavior of yeast after the pretreatment was probably caused by an interaction between yeast and PC. The reactive halomethyl group in PC molecule plays a key role for the interaction. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Reactions performed under solvent‐free conditions give processes that are environmentally friendly, since most solvents are polluting agents. In this work, the performance of Candida rugosa lipae (CRL) immobilized on styrene‐divinylbenzene (STY‐DVB) or controlled pore silica (CPS), and the commercial lipase Novozym 435, was evaluated for the synthesis of butyl esters in solvent–free systems (SFS). A 22 full factorial design was used to study the influence of the organic acid chain length and the biocatalyst concentration on the esterification performance. RESULTS: When CRL on STY‐DVB was used, the ester formation was influenced by both variables and their interaction. The reaction conversion was higher (63%) using 10% of immobilized system and lauric acid, corresponding to a productivity of 3.62 g L?1 h?1 For CRL on CPS, only the effect of biocatalyst concentration was significant, and the highest yield was attained using 20% of immobilized system and caprilic acid. In the case of Novozym 435, the highest yield (49%) was obtained using butyric acid as acyl donor at 15% of immobilized lipase. CONCLUSION: The results allowed better understanding of the influence of important parameters in this environmentally friendly process, which also has the process advantage of a higher volumetric productivity when compared with a solvent system. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
The amination of racemic α‐chiral aldehydes, 2‐phenylpropanal derivatives, was investigated employing ω‐transaminases. By medium and substrate engineering the optical purity of the resulting β‐chiral chiral amine could be enhanced to reach optical purities up to 99% ee. Using enantiocomplementary ω‐transaminases allowed us to access the (R)‐ as well as the (S)‐enantiomer in most cases. It is important to note that the stereopreference of the ω‐transaminases found for α‐chiral aldehydes did not correlate with the stereopreference previously observed for the amination of methyl ketones. In one case the stereopreference switched even upon exchanging a methyl substituent to a methoxy group.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号