首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, γ‐ray radiation technique was utilized to simply functionalize multi‐walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs (MWCNTs‐Am) was proven and the physicochemical properties of MWCNTs before and after radiation grafting modifications were characterized using FT‐IR, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated that the γ‐ray radiation had the visible effects on the surface properties of MWCNTs. The effects of various functionalized MWCNTs on morphological, thermal, and mechanical properties of an epoxy‐based nanocomposite system were investigated. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy‐based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT‐Am showed 13.0% increase in tensile strength, 20.0% increase in tensile modulus, and 24.1% increase in thermal decomposition temperature. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

2.
The homogenous nanocomposite films of UV/O3 oxidized multiwall carbon nanotubes (MWCNTs) subsequently modified with aniline moiety were synthesized with polymethylmethacrylate (PMMA) through free radical polymerization. The phenylamine functional groups present on the surface of MWCNTs providing an anchoring sites for deposition of Ag metal nanoparticles (NP).The in situ free radical polymerization of MMA in the presence of these well dispersed nanotubes gave a new class of radiation resistant nanocomposite films. The synthesized materials were characterized by FT‐IR, TGA, TEM, EDX, TC, DMA, universal testing machine, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. The microscopic and structural properties reflect the homogenous mixing of modified MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% addition of modified nanofiller. Thermal and thermo‐mechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films have been compared with neat polymer. The results revealed that modified nanofiller network can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
The ultrasonically assisted preparation and characterization of poly(amide‐imide) (PAI) composites containing functionalized multi‐walled carbon nanotubes (MWCNTs) are reported. To improve the dispersion in and compatibility with the polymer matrix, the MWCNTs were surface‐modified with p‐aminophenol (p‐AP) under microwave irradiation. The process is fast, one‐pot, easy and results in a high degree of functionalization as well as dispersibility in organic solvents. The p‐AP‐functionalized MWCNTs (MWCNTs‐AP) were analysed by means of field emission and transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction and thermogravimetric analysis (TGA). The results consistently confirm the formation of p‐AP functionalities on MWCNTs which are able to undergo additional reactions, while the structure of the MWCNTs remains relatively intact. MWCNTs‐AP/PAI hybrid films were prepared with various MWCNTs‐AP contents (5–15 wt%) using a solution‐casting technique. Microscopic observations show that the dispersion of the MWCNTs‐AP is improved as a result of the organic groups on the MWCNT surface and functional groups in the PAI structure. The properties of the obtained composites were characterized extensively using the aforementioned techniques. TGA results show that the hybrid films exhibit a good thermal stability. Tensile mechanical testing was performed for the prepared composites, the results of which indicate an increase in the elastic modulus and tensile strength with increasing MWCNTs‐AP content. © 2013 Society of Chemical Industry  相似文献   

4.
Polybenzimidazole (PBI) nanocomposites containing 0.5–5 wt% vapor grown carbon nanofibers (VGNFs) were successfully synthesized by solvent evaporation method. Fracture morphology examination confirmed the uniform dispersion of VGNFs in the matrix. The mechanical properties of neat PBI and the nanocomposites were systematically measured by tensile test, dynamic mechanical analysis (DMA), hardness measurement, and friction test. Tensile tests revealed that Young's modulus increased by about 43.7% at 2 wt% VGNFs loading, and further modulus growth was observed at higher filler loadings. DMA studies showed that the nanocomposites have higher storage modulus than neat PBI in the temperature range of 30–350°C, holding storage modulus larger than 1.54 GPa below 300°C. Outstanding improvement of hardness was achieved for PBI upon incorporating 2 wt% of VGNFs. The results of friction test showed that coefficient of friction of PBI nanocomposites decreased with VGNFs content compared with neat PBI. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
This study reports the preparation and characterization of composites with recycled poly (vinyl butyral) (PVB) and wet blue leather fiber with leather contents of 30, 50, and 70 wt%, using an extruder equipped with a Maillefer single screw operated with a flat extrusion die. The components of the composites were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy (FTIR). After extrusion, the PVB/leather composite plates were compression‐molded to obtain specimens for testing the tensile properties, hardness, abrasion resistance, and tear strength. The morphologies of the composites were analyzed by scanning electron microscopy (SEM). The DMA and FTIR analyses showed that the recycled PVB contained plasticizer remained in the polymer matrix after extrusion. The SEM analysis revealed good interfacial adhesion between the PVB matrix and the leather fibers. Increasing the leather content in the composites led to a significant increase in the tensile modulus and a reduction in the tensile strain at breaks. The Shore hardness of the composites increased with the wt% of leather, whereas the abrasion resistance decreased. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.  相似文献   

6.
This paper reports a comparative study of propylene–ethylene copolymer (EP) nanocomposites synthesized using zinc‐ion (Zn2+)‐coated nanosilica (ZNS) and the diglycidyl ether of bisphenol‐A (DGEBA, an epoxy resin)‐modified zinc‐ion‐coated nanosilica (EZNS) as nanofillers. These nanocomposites were prepared using the ‘melt mixing’ method at a constant loading level of 2.5 wt%. This loading level is much lower than that used for fillers in conventional composites. The EP nanocomposites were characterized using wide‐angle X‐ray diffractometer (WAXD), a thermo gravimetric analyzer (TGA), a differential scanning calorimeter (DSC), a dynamic mechanical analyzer (DMA) and scanning electron microscopy (SEM). DMA results showed a higher storage modulus for EP‐epoxy‐modified Zn2+‐coated nanosilica nanocomposite (EP‐EZNS) with respect to EP and EP‐Zn2+‐coated nanosilica nanocomposite (EP‐ZNS). In addition, TGA thermograms showed an increase in degradation temperature of EP in the presence of EZNS. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Multi‐walled carbon nanotube (MWCNT)/Poly(ethylene terephthalate) (PET) nanowebs were obtained by electrospinning. For uniform dispersion of MWCNTs in PET solution, MWCNTs were functionalized by acid treatment. Introduction of carboxyl groups onto the surface of MWCNTs was examined by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) analysis. MWCNTs were added into 22 wt % PET solution in the ratio of 1, 2, 3 wt % to PET. The morphology of MWCNT/PET nanoweb was observed using field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The nanofiber diameter decreased with increasing MWCNT concentration. The distribution of the nanofiber diameters showed a bi‐modal shape when MWCNTs were added. Thermal and tensile properties of electrospun MWCNT/PET nanowebs were examined using a differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA) and etc. Tensile strength, tensile modulus, thermal stability, and the degree of crystallinity increased with increasing MWCNT concentration. In contrast, elongation at break and cold crystallization temperature showed a contrary tendency. Electric conductivities of the MWCNT/PET nanowebs were in the electrostatic dissipation range. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Nylon 10 10–montmorillonite nanocomposite has been prepared successfully using intercalating polymerization. The nanocomposite was investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR), Atom force microscopy (AFM), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC), and Dynamic mechanical analysis (DMA). The results show that there are uniformly dispersed silicate layers in the nylon 10 10 matrix. The resulting nanocomposites have higher onset decomposition temperature and dynamic storage moduli than those of pure nylon 10 10. In addition, it was found that montmorillonite plays an important role in heterophase nucleation of the crystallization of nylon 10 10 in composites. Mechanical testing shows that the tensile modulus of nanocomposites is superior to that of nylon 10 10, and the ultimate strain values of the nanocomposites remain at a level similar to nylon 10 10 if the content of montmorillonite is not more than 6 wt%.  相似文献   

9.
Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The homogeneous nanocomposites (NC) films of amino modified and metal decorated multiwall carbon nanotubes (MWCNTs) with polymethylmethacrylate (PMMA) were synthesized through in‐situ free radical polymerization. Silver metal nanohybrids (Ag/MWCNTs) were prepared by two strategies, that is, reduction of metal salt in presence of sodium dodecyl sulfate and in‐situ growth from AgNO3 aqueous solution. The amino functionalization by ball milling enhanced the dispersion of MWCNT in monomer and produced a new class of radiation resistant NC. These synthesized films were characterized by FTIR, TGA, TEM, EDX, TC, DMA, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. Microscopic studies reflect the homogeneous mixing of amino functionalized and metal decorated MWCNTs in polymer matrix contributing in the enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of NC even at 0.25 wt% addition of modified nanofiller. The thermal stability of NC film at 0.25 wt% loading was increased around ≂50°C and the raise of thermo‐mechanical properties was observed up to 85% at 100°C in the presence of adsorbed surfactant. Thermal and thermomechanical behavior of pre and post UV/O3 irradiated NC films has been compared with neat polymer. The results revealed that amino modified nanofiller embedded network in polymer matrix can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 35:1807–1817, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

12.
To attain thermally conductive but electrically insulating polymer films, in this study, polyimide (PI) nanocomposite films with 1–30 wt% functionalized hexagonal boron nitride nanosheets (BNNSs) were fabricated via solution casting and following imidization. The microstructures, mechanical and thermal conductive properties of PI/BNNS nanocomposite films were examined by taking account of the relative content, anisotropic orientation, and interfacial interaction of BNNS and PI matrix. The scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffractometry data revealed that BNNSs with hydroxy and amino functional groups have specific molecular interactions with PI matrix and they form stacked aggregates in the nanocomposite films with high BNNS loadings of 10–30 wt%. The tensile mechanical strength/modulus, thermal degradation temperatures, and thermal conductivity of the nanocomposite films were found to be significantly enhanced with increasing the BNNS loadings. For the nanocomposite films with 1–30 wt% BNNS loadings, the in-plane thermal conductivity was measured to be 1.82–2.38 W/mK, which were much higher than the out-of-plane values of 0.35–1.14 W/mK. The significant anisotropic thermal conductivity of the nanocomposite films was found to be owing to the synergistic anisotropic orientation effects of both BNNS and PI matrix. It is noticeable that the in-plane and out-of-plane thermal conductivity values of the nanocomposite film with 30 wt% BNNS were ~1.31 and ~3.35 times higher than those of neat PI film, respectively.  相似文献   

13.
UV/O3 radiation and chemical resistant nanocomposite films of functionalized/metal decorated multiwall carbon nanotubes (MWCNTs) with polymethylmethacrylate (PMMA) are synthesized. Silver nanoparticles are decorated on the surface of UV/O3 functionalized MWCNTs by both reduction and in situ growth from AgNO3 aqueous solution. Microscopic studies reflect the better dispersion of UV/O3 functionalized/silver decorated MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermomechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% MWCNTs additions. The thermal stability of nanocomposite film (0.25 wt% loading), prepared by using a surfactant (Sodium dodecyl sulfate) is increased to about 27°C while the thermomechanical properties are raised up to 76% at 100°C. Thermal and thermomechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films are compared with neat polymer. The results reveal that UV/O3 functionalized MWCNTs can effectively disperse the radiation and have a dramatic reinforcement effect on the nature of the degradation of PMMA matrix. POLYM. COMPOS., 36:969–978, 2014. © 2014 Society of Plastics Engineers  相似文献   

14.
Soybean oil‐based polymer nanocomposites were synthesized from acrylated epoxidized soybean oil (AESO) combined with styrene monomer and montmorillonite (MMT) clay by using in situ free radical polymerization reaction. Special attention was paid to the modification of MMT clay, which was carried out by methacryl‐functionalized and quaternized derivative of methyl oleate intercalant. It was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of increased nanofiller loading in thermal and mechanical properties of the nanocomposites was investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The nanocomposites exhibited improved thermal and dynamic mechanical properties compared with neat acrylated epoxidized soybean oil based polymer matrix. The desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt % whereas partially exfoliated nanocomposite was obtained in 3 wt % loading. It was found that about 400 and 500% increments in storage modulus at glass transition and rubbery regions, respectively were achieved at 2 wt % clay loading compared to neat polymer matrix while the lowest thermal degradation rate was gained by introducing 3 wt % clay loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2031–2041, 2013  相似文献   

15.
Functionalization of multi-walled carbon nanotubes (MWCNTs) by glucose was performed through esterification reaction. The reaction was carried out in water, in the presence of N,N′-carbonyldiimidazole as a catalyst. Glucose-functionalized MWCNTs (MWCNTs-Gl) were characterized by a set of methods including Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning, and transmission electron microscopy. Thermogravimetric analysis (TGA) results also demonstrated the presence of organic portions of the functionalized MWCNTs. MWCNT-Gl/poly(amide-imide) (PAI) composite films with different MWCNTs-Gl content (5, 10, and 15 wt%) were prepared by ultrasonication-assisted solution blending method. Microscopic observations showed that the dispersion of the MWCNTs-Gl was improved by the organic groups on the MWCNT surface and functional groups on the PAI. TGA results showed that the hybrid films exhibited a good thermal stability. According to mechanical tensile tests, the tensile strength and the Young’s modulus of the MWCNT-Gl/PAI composites were increased with increasing MWCNTs-Gl content.  相似文献   

16.
A procedure is proposed to prepare poly(vinylidene fluoride) (PVDF) multiwalled carbon nanotubes (MWCNTs) nanocomposite thin films with improved mechanical and dielectric properties compared to the pure PVDF films. The PVDF/MWCNT mixture with a composition range from 0.0 to 5.0% MWCNTs by weight was formed using solution blending and the ultrasonic dispersion method and then spin coated on a rotating glass substrate to produce films nearly 20 μ thick. Results indicate that the appropriate addition of MWCNTs (up to 3.0 wt%) to PVDF can significantly increase its elastic modulus while decrease its fracture toughness. The elastic modulus shows softening at a 5.0 wt% MWCNT loading. The DC and AC conductivity of the composite films were also examined with various MWCNTs concentrations. The dielectric constants were found more than doubled for 0.5 wt% MWCNTs composite compared to the values for the pure PVDF. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
This article presents the results of investigation into surface modification of carboxylated‐multiwalled carbon nanotubes (MWCNT)s by 5‐aminoisophthalic acid under microwave irradiation as a fast, safe, and simple method. The different contents of functionalized MWCNTs (5, 10, 15 wt%) were effectively dispersed in an aromatic polymer through ultrasonic irradiation to prepare MWCNT reinforced polymer nanocomposites (NC)s. The chiral poly(ester‐imide) (PEI) was prepared by a direct polycondensation of chiral diacid with 4,4′‐thiobis(2‐tert‐butyl‐5‐methylphenol). The effect of the presence of MWCNTs on morphological and thermal properties of the NCs was investigated by X‐ray diffraction, FT‐IR spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy, and field emission scanning electron microscopy. According to TGA data, the PEI/MWCNT NCs showed a much better thermal stability than pristine polymer. The microstructure study of the NCs indicated the compatibility of functionalized MWCNTs with PEI and uniform distribution of them in the polymer matrices. POLYM. COMPOS., 37:835–843, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
In this work, multiwall carbon nanotubes (MWCNT) were functionalized with phenol and characterized by using Fourier transform infrared spectroscopy (FTIR). Isotactic polypropylene (iPP)/MWCNT composites of both the unfunctionalized and functionalized MWCNT were prepared by melt blending in a miniextruder at different loadings of nanotubes (i.e., 0.1, 0.25, 1.0, and 5.0 wt%). The tensile properties of the composites were found to increase with increase in nanotube loading with a maximum in Young's modulus being achieved at 1.0 wt% loading of phenol functionalized MWCNT. The differential scanning calorimetry (DSC) studies reveal the nucleating effect of MWCNT on the crystallization of iPP. Percentage crystallinity was found to increase on phenol functionalization of MWCNT. Results of X‐ray diffraction studies of the composites are in conformity with that of DSC studies. Dynamic mechanical studies reveal that the functionalized MWCNT causes many fold increase in the storage modulus, and the effect is pronounced in the case of functionalized MWCNT. POLYM. ENG. SCI. 2012. © 2011 Society of Plastics Engineers  相似文献   

19.
Association of a method of the incorporation of graphene oxide (GO) into sodium alginate (Na‐alg) polymer matrix with a method of the use multivalent cations crosslinker was put forward to synthesize novel Na‐alg/GO nanocomposite films. The structures, morphologies, and the properties of Na‐alg/GO films were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FE‐SEM), thermogravimetric analysis (TGA), and tensile tests. The results revealed that the interlayer distance of GO sheets increased from 0.83 nm to 1.08 nm after assembling with Na‐alg, and Na‐alg inserted into GO layers crosslinking with multivalent cations increased the interlayer distance further. Ionic crosslinking significantly enhanced thermal and mechanical properties of Na‐alg/GO nanocomposite films. In particular, Fe3+ led to Na‐alg/GO nanocomposite films of significantly higher tensile strength and modulus than Ca2+ and Ba2+. The excellent thermal and mechanical properties of these novel Na‐alg/GO nanocomposite films may open up applications for Na‐alg films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43616.  相似文献   

20.
Ming Zeng  Yuxiang Zhou 《Polymer》2004,45(10):3535-3545
We prepared two series of semiinterpenetrating polymer network (semi-IPN) films from cross-linked waterborne polyurethane (WPU) and carboxymethylchitin (CMCH) in the aqueous solution on the glass and Teflon as the hydrophilic and hydrophobic substrates, respectively, by casting method. The chemical compositions, structure and morphologies of the films were examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The miscibility, thermal stability and mechanical properties of the films were investigated by density measurement, dynamic mechanical analysis (DMA), ultraviolet (UV) spectroscopy, thermogravimetric analysis (TGA), tensile testing and solvent swelling testing. The results revealed that the semi-IPN films exhibited good miscibility when CMCH content was lower than 35 and 65 wt% for the films prepared on the glass and Teflon, respectively, resulting in higher light transmittance, thermal stability and tensile strength than the WPU film. Interestingly, the films prepared with the Teflon as the substrate possessed better miscibility and higher storage modulus, thermal stability, tensile strength and solvent-resistance than that with the glass as the substrate over the entire composition range studied here. This difference can be attributed that a strong intermolecular interaction occurred between WPU and CMCH to form a dense architecture, owing to that two kinds of macromolecules all were repulsed from the Teflon surface and forced to concentrate into inner surface. It has been confirmed that the hydrophility and hydrophobility of the solid substrate significantly influenced the structures and properties of the casting films, and using Teflon solid substrate can more effectively improve the miscibility and properties of the semi-IPN materials with hydrophilic character than glass one. We proposed a model describing the formation of WPU/CMCH semi-IPN films cast on the hydrophilic and hydrophobic substrates to illustrate the different structures of two types of films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号