首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
An ionic liquid (IL) is a salt that remains in the liquid state at room temperature. It does not vaporize under vacuum and imparts electrical conductivity to samples for observation by scanning electron microscopy (SEM). Recently, the usefulness of ILs has been widely recognized. In our previous study, one of the ILs 1-ethyl-3-methylimidazolium tetrafluoroborate (EtMelm(+) BF(4)(-)) was used for SEM analysis of biological samples. In comparison with the conventional method, samples prepared using EtMelm(+) BF(4)(-) provided more detailed SEM images of the cell ultrastructure, enabling the observation of protrusions. In addition, the IL treatment is a less time consuming and simple method that does not include dehydration, drying, and conductivity treatments, which are an essential parts of the conventional method. In this study, we compared the usefulness of four hydrophobic and three hydrophilic ILs for SEM to observe fixed cultured human A549 cells. All ILs worked well to prevent "charge-up" effect for SEM observation. However, the hydrophilic ILs tended to provide clearer images than the hydrophobic ILs. We concluded that various ILs can be used for SEM sample preparation and their application to a wide range of fields is anticipated in future.  相似文献   

2.
Cryogenic transmission electron microscopy of high‐pressure freezing (HPF) samples is a well‐established technique for the analysis of liquid containing specimens. This technique enables observation without removing water or other volatile components. The HPF technique is less used in scanning electron microscopy (SEM) due to the lack of a suitable HPF specimen carrier adapter. The traditional SEM cryotransfer system (PP3000T Quorum Laughton, East Sussex, UK; Alto Gatan, Pleasanton, CA, USA) usually uses nitrogen slush. Unfortunately, and unlike HPF, nitrogen slush produces water crystal artefacts. So, we propose a new HPF specimen carrier adapter for sample transfer from HPF system to cryogenic‐scanning electronic microscope (Cryo‐SEM). The new transfer system is validated using technical two applications, a stearic acid in hydroxypropyl methylcellulose solution and mice myocardium. Preservation of samples is suitable in both cases. Cryo‐SEM examination of HPF samples enables a good correlation between acid stearic liquid concentration and acid stearic occupation surface (only for homogeneous solution). For biological samples as myocardium, cytoplasmic structures of cardiomyocyte are easily recognized with adequate preservation of organelle contacts and inner cell organization. We expect this new HPF specimen carrier adapter would enable more SEM‐studies using HPF.  相似文献   

3.
Internal sample conductivity in scanning electron microscopy can be a valuable alternative to metal coating. Proton conductivity may be used for this purpose. Many solid materials with active hydrogen atoms, such as hydrogen‐ and ammonium‐salts, organic acids, and even ice, are protonic conductors or semiconductors. Here we present a method to generate proton conductivity in dry biological materials. A simple treatment with hydrogen chloride gas or hydrochloric acid vapour for a few minutes provides sufficient conductivity for many samples. After a removal of excess hydrogen chloride vapour with a vacuum desiccator, the objects may be examined in the SEM without metal coating. The use of internally conductive samples extends the range of easy‐to‐perform SEM preparation techniques. It is advantageous for material contrast imaging of uncoated samples, and it can be used in combination with metal coating to enhance conductivity on difficult samples with complex overlapping surfaces, where simple metal coating does not reliably eliminate charging problems.  相似文献   

4.
The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non‐conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre‐coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross‐section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high conductivity without application of surface coating and requires less time and a reduced use of toxic chemicals.  相似文献   

5.
Cryogenic electron microscopy (cryo‐EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo‐TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo‐SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo‐EM involve either water or organic components. In this paper, we introduce the use of novel cryo‐TEM and cryo‐SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single‐walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo‐TEM and cryo‐SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid‐crystalline CNT phases, used as the ‘dope’ for all‐carbon‐fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self‐assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy.  相似文献   

6.
This study aimed to use scanning electron microscopy with energy dispersive spectroscopy (SEM‐EDS) to examine the elements that passed into the gastric acid solution after the application of a gastric acid erosive cycle to chitosan modified glass ionomer cement (GIC). Chitosan modified GIC samples were obtained by adding chitosan (vol/vol) of 5 and 10% to GIC for the experimental groups. These two experimental groups and a control group were subjected to gastric acid erosive treatment for 60 s six times a day for 10 days. The sample surfaces were coated with approximately 1 nm of gold to increase conductivity with the Q 150R ES device (Quorum Technologies, East Sussex, England). Surface topography images were obtained with a SEM. Besides, EDS analysis was also determined the number of elements graphically in the region where the fast electron beam hit. In the samples examined, the amount of element was determined. After gastric acid application, cracks and voids were observed on the surfaces of the samples. In the EDS analysis of the 5 and 10% chitosan modified GIC and control groups, Si, Al, Na, and F was found. It is necessary to investigate the antibacterial properties and physical properties of chitosan modified glass ionomer‐free elements and fluorine ions using advanced techniques.  相似文献   

7.
Simplifying sample processing, shortening the sample preparation time, and adjusting procedures to suitable for new health and safety regulations, these issues are the current challenges which electron microscopic examinations need to face. In order to resolve these problems, new plant tissue sample processing protocols for transmission electron microscopy should be developed. In the present study, we chose the LR‐White resin‐assisted processing protocol for the ultrastructural observation of different types of plant tissues. Moreover, we explored Oolong tea extract (OTE) as a substitute for UA in staining ultrathin sections of plant samples. The results revealed that there was no significant difference between the OTE double staining method and the traditional double staining method. Furthermore, in some organelles, such as mitochondria in root cells of tomatoes and chloroplast in leaf cells of watermelons, the OTE double staining method achieved little better results than the traditional double staining method. Therefore, OTE demonstrated good potentials in replacing UA as a counterstain on ultrathin sections. In addition, sample preparation time was significantly shortened and simplified using LR‐White resin. This novel protocol reduced the time for preparing plant samples, and hazardous reagents in traditional method (acetone and UA) were also replaced by less toxic ones (ethanol and OTE).  相似文献   

8.
A new controlled environment vitrification system (CEVS) has been designed and constructed to facilitate examination by cryogenic scanning electron microscopy (Cryo‐SEM) of initial suspension state and of microstructure development in latex, latex–composite and other coatings while they still contain solvent. The new system has a main chamber with provisions for coating as well as drying, and for well‐controlled plunging into cryogen. An added subsidiary chamber holds samples for drying or annealing over minutes to days before they are returned to the main chamber and plunged from it. In the main chamber, samples are blade‐coated on 5 × 7 mm pieces of silicon wafer and held at selected temperature and humidity for successively longer times, either there or after transfer along a rail into the subsidiary chamber. They are then placed in the sample holder mounted on the plunge rod, so as to permit adjustment of the sample's attitude when it plunges, at controlled speed, into liquid ethane at its freezing point, to a chosen depth, in order to solidify the sample without significant shear or freezing artifacts. The entries of plunging samples and related sample holders into liquid ethane were recorded with a high‐speed, high‐resolution Photron digital camera. The data were interpreted with a new hypothesis about the width of the band of extremely rapid cooling by deeply subcooled nucleate boiling below the line of entry. Complementary cryo‐SEM images revealed that the freezing rate and surface shearing of a sample need to be balanced by adjusting the plunging attitude.  相似文献   

9.
Electron microscopy has been used to visualize chromosome since it has high resolution and magnification. However, biological samples need to be dehydrated and coated with metal or carbon before observation. Ionic liquid is a class of ionic solvent that possesses advantageous properties of current interest in a variety of interdisciplinary areas of science. By using ionic liquid, biological samples need not be dehydrated or metal-coated, because ionic liquid behaves as the electronically conducting material for electron microscopy. The authors have investigated chromosome using ionic liquid in conjunction with electron microscopy and evaluated the factors that affect chromosome visualization. Experimental conditions used in the previous studies were further optimized. As a result, prewarmed, well-mixed, and low concentration (0.5~1.0%) ionic liquid provides well-contrasted images, especially when the more hydrophilic and the higher purity ionic liquid is used. Image contrast and resolution are enhanced by the combination of ionic liquid and platinum blue staining, the use of an indium tin oxide membrane, osmium tetroxide-coated coverslip, or aluminum foil as substrate, and the adjustment of electron acceleration voltage. The authors conclude that the ionic-liquid method is useful for the visualization of chromosome by scanning electron microscopy without dehydration or metal coating.  相似文献   

10.
In this study, microstructural characterization of Ti‐6Al‐4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross‐section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X‐ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X‐ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Microsc. Res. Tech. 76:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Leafy liverwort is one of the most abundant and diverse plants in Indonesia. Their high variation and beneficial secondary metabolites contained in the oil bodies have attracted researchers' attention. The ultrastructural analysis of leafy liverworts is important as a means of species identification and also for further exploration of their oil bodies. However, the optimization of the preparation steps for observing leafy liverworts by SEM is necessary to avoid sample destruction. Fixation and drying play important roles in maintaining a sample's structure as close to its natural state as possible. Thus, in this study, we evaluated the effect of 4% Osmium tetroxide (OsO4) and drying on leafy liverworts ultrastructure. Microlejeunea, Acrolejeunea, and Frullania were fixed with 2.5% glutaraldehyde. Some samples were then post‐fixed with 4% OsO4, while the rest were directly dehydrated with an ethanol series and then subjected to different drying methods, i.e. air drying, freeze drying, and drying with hexamethyldisilazane (HMDS). According to the data obtained, post‐fixation with 4% OsO4 could better maintain the integrity of the samples and enhance the contrast of leafy liverwort SEM images. In addition, samples dried with HMDS showed more detailed structures compared to those that were air dried. Different ultrastructure were found among the different leafy liverworts observed by SEM. Our data suggested the advantages of SEM in providing ultrastructure information on leafy liverworts as well as the optimum conditions to observe them with less deformation. OsO4 post‐fixation could enhance the contrast of leafy liverwort SEM images and maintain the structure of the samples. Drying with HMDS provided a convenient way for rapid SEM preparation with less structural distortion.  相似文献   

12.
While engineered nanomaterials (ENMs) are increasingly incorporated into industrial processes and consumer products, the potential biological effects and health outcomes of exposure remain unknown. Novel advanced direct visualization techniques that require less time, cost, and resource investment than electron microscopy (EM) are needed for identifying and locating ENMs in biological samples. Hyperspectral imaging (HSI) combines spectrophotometry and imaging, using advanced optics and algorithms to capture a spectrum from 400 to 1000 nm at each pixel in an enhanced dark‐field microscopic (EDFM) image. HSI‐EDFM can be used to confirm the identity of the materials of interest in a sample and generate an image “mapping” their presence and location in a sample. Hyperspectral mapping is particularly important for biological samples, where ENM morphology is visually indistinct from surrounding tissue structures. While use of HSI (without mapping) is increasing, no studies to date have compared results from hyperspectral mapping with conventional methods. Thus, the objective of this study was to utilize EDFM‐HSI to locate, identify, and map metal oxide ENMs in ex vivo histological porcine skin tissues, a toxicological model of cutaneous exposure, and compare findings with those of Raman spectroscopy (RS), energy‐dispersive X‐ray spectroscopy (EDS), and scanning electron microscopy (SEM). Results demonstrate that EDFM‐HSI mapping is capable of locating and identifying ENMs in tissue, as confirmed by conventional methods. This study serves as initial confirmation of EDFM‐HSI mapping as a novel and higher throughput technique for ENM identification in biological samples, and serves as the basis for further protocol development utilizing EDFM‐HSI for semiquantitation of ENMs. Microsc. Res. Tech. 79:349–358, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
There is a growing interest in the use of ionic liquids to provide lubrication for challenging contacts. This study is an initial assessment of the application of two ionic liquids based on choline chloride cations to be used as ionic liquid lubricants for engineering contacts, in this case steel on steel. These ionic liquids, termed ethaline and reline, have anions of ethylene glycol and urea, respectively, and are available at relatively low costs and in high quantities. In order to assess the lubrication performance of the ionic liquids, lubricated reciprocating sliding wear tests were conducted between M2 tool steel samples and a steel stylus. Initial tests conducted at a sliding speed of 0.005 m s?1 and 30 N showed that ionic liquids could provide low friction lubrication, comparable to that of SAE 5W30 friction modifier free engine oil under the same test conditions; however, lubrication was lost after short sliding distances. Further testing with higher sliding speed/lower load and varying sample surface textures showed that ionic liquid lubrication could be better maintained in high-speed/low-load testing and by increasing the roughness and therefore surface area of the sample. It was also observed that the choline chloride/urea ionic liquid formed a residual film when tested on iron silicate peened samples, and that this film may promote lubrication.  相似文献   

14.
OBJECTIVES: To compare microleakage of three self‐etch adhesives and to analyze enamel surface morphology and interfacial morphology of resin–enamel and resin–dentin interface under scanning electron microscope (SEM). EXPERIMENTAL DESIGN: Study was conducted in 65 extracted human premolars. Class V cavities were prepared in 45 teeth and assigned to three groups (n = 15) according to three self‐etch adhesives (OptiBond All‐in‐One, iBond, and Adper Prompt L‐Pop). After restoration, 10 samples from each group were used to assess microleakage at enamel and dentin margin. Five samples from each group were used for analysis of interfacial morphology at resin–enamel and resin–dentin interface under SEM. Remaining 20 teeth were used to prepare flat enamel buccal surfaces to analyze the difference in surface morphology after treatment with three adhesives (n = 5 each) and 36% phosphoric acid treatment (n = 5). PRINCIPAL OBSERVATIONS: At enamel margin, Prompt L‐Pop depicted least leakage of all the three adhesives and also showed best interfacial adaptation under SEM. At dentin margin, OptiBond All‐in‐One showed significant less leakage than iBond and Prompt L‐Pop. On flat enamel surface, phosphoric acid produced the most retentive etching pattern when compared with the three adhesives. CONCLUSION: Prompt L‐Pop showed the best bonding effectiveness in enamel, whereas OptiBond All‐in‐One performed significantly better in dentin. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Epithelial-mesenchymal transition (EMT) is a key event in cancer metastasis and is characterized by increase in cell motility, increase in expression of mesenchymal cell markers, loss of proteins from cell-to-cell junction complexes, and changes in cell morphology. Here, the morphological effects of a representative EMT inducer, transforming growth factor (TGF)-β1, were investigated in human lung adenocarcinoma (A549) cells and pancreatic carcinoma (Panc-1) cells. TGF-β1 caused morphological changes characteristic of EMT, and immunostaining showed loss of E-cadherin from cell-to-cell junction complexes in addition to the upregulation of the mesenchymal marker vimentin. During scanning electron microscopy (SEM) with an ionic liquid, we observed EMT-specific morphological changes, including the formation of various cell protrusions. Interestingly, filopodia in mitotic cells were clearly observed by SEM, and the number of these filopodia in TFG-β1-treated mitotic cells was reduced significantly. We conclude that this reduction in such mitotic protrusions is a novel effect of TGF-β1 and may contribute to EMT.  相似文献   

16.
Introduction: Here we co‐cultured hepatic progenitor cells (HPCs) and mesenchymal stem cells (MSCs) to investigate whether the co‐culture environments could increase hepatocytes form. Methods: Three‐dimensional (3D) co‐culture model of HPCs and MSCs was developed and morphological features of cells were continuously observed. Hepatocyte specific markers Pou5f1/Oct4, AFP, CK‐18 and Alb were analyzed to confirm the differentiation of HPCs. The mRNA expression of CK‐18 and Alb was analyzed by RT‐PCR to investigate the influence of co‐culture model to the terminal differentiation process of mature hepatocytes. The functional properties of hepatocyte‐like cells were detected by continuously monitoring the albumin secretion using Gaussia luciferase assays. Scaffolds with HPCs and MSCs were implanted into nude mouse subcutaneously to set up the in vivo co‐culture model. Results: Although two groups formed smooth spheroids and high expressed of CK‐18 and Alb, hybrid spheroids had more regular structures and higher cell density. CK‐18 and Alb mRNA were at a relatively higher expression level in co‐culture system during the whole cultivation time (P < 0.05). Albumin secretion rates in the hybrid spheroids had been consistently higher than that in the mono‐culture spheroids (P < 0.05). In vivo, the hepatocyte‐like cells were consistent with the morphological features of mature hepatocytes and more well‐differentiated hepatocyte‐like cells were observed in the co‐culture group. Conclusions: HPCs and MSCs co‐culture system is an efficient way to form well‐differentiated hepatocyte‐like cells, hence, may be helpful to the cell therapy of hepatic tissues and alleviate the problem of hepatocytes shortage. Microsc. Res. Tech. 78:688–696, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Recent studies have suggested that silver nanoparticles (AgNPs) may affect cell DNA structure in in vitro conditions. In this paper, we present the results indicating that AgNPs change nuclear complexity properties in isolated human epithelial buccal cells in a time‐dependent manner. Epithelial buccal cells were plated in special tissue culture chamber / slides and were kept at 37°C in an RPMI 1640 cell culture medium supplemented with L‐glutamine. The cells were treated with colloidal silver nanoparticles suspended in RPMI 1640 medium at the concentration 15 mg L?1. Digital micrographs of the cell nuclei in a sample of 30 cells were created at five different time steps: before the treatment (controls), immediately after the treatment, as well as 15 , 30 and 60 min after the treatment with AgNPs. For each nuclear structure, values of fractal dimension, lacunarity, circularity, as well as parameters of grey level co‐occurrence matrix (GLCM) texture, were determined. The results indicate time‐dependent reduction of structural complexity in the cell nuclei after the contact with AgNPs. These findings further suggest that AgNPs, at concentrations present in today's over‐the‐counter drug products, might have significant effects on the cell genetic material.  相似文献   

18.
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin‐infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge‐like morphology of nondistinguishable intracellular compartments. Resin‐infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell–cell and cell–surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra‐thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three‐dimensional features by scanning electron microscopy.  相似文献   

19.
Quantification of fluorescence resonance energy transfer (FRET) needs at least two external samples, an acceptor‐only reference and a linked FRET reference, to calibrate fluorescence signal. Furthermore, all measurements for references and FRET samples must be performed under the same instrumental conditions. Based on a novel notion to predetermine the molar extinction coefficient ratio (RC) of acceptor‐to‐donor for the correction of acceptor excitation crosstalk, we present here a robust and independent emission‐spectral unmixing FRET methodology, Iem‐spFRET, which can simultaneously measure the E and RC of FRET sample without any external references, such that Iem‐spFRET circumvents the rigorous restriction of keeping the same imaging conditions for all FRET experiments and thus can be used for the direct measurement of FRET sample. We validate Iem‐spFRET by measuring the absolute E and RC values of standard constructs with different acceptor‐to‐donor stoichiometry expressed in living cells. Our results demonstrate that Iem‐spFRET is a simple and powerful tool for real‐time monitoring the dynamic intermolecular interaction within single living cells.  相似文献   

20.
Transmission electron microscopy (TEM) provides sub‐nanometre‐scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro‐CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench‐top micro‐CT scanner with 10 μm resolution was used to determine the location of patches of the mucous membrane in osmium‐stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra‐thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号