首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exfoliated graphite nanoplatelets were modified by hexadecyltrimethylammonium bromide (C16TAB) and were used for the construction of [poly(acrylic acid)/graphite]n [(PAA/G)n] multilayer films using a layer‐by‐layer (LBL) self‐assembly method. The film thickness was monitored using X‐ray diffraction technique; the results showed that the thickness depended on pH of PAA. Under a lower pH value such as 1.5, the average bilayer thickness was 1.5 nm. Once the pH of PAA was increased to 6.5, the bilayer thickness was around 30 nm. The C16TAB modified (PAA/G)n multilayer films showed high thermal stability and electrical conductivity. A percolation phenomenon occurred at bilayer number of 11, and the mechanism was discussed. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Na‐montmorillonite/polyethyleneimine‐g‐poly(methyl methacrylate) (Na‐MMT/PEI‐g‐PMMA) nanocomposite latexes were prepared by soap‐free emulsion polymerization in the aqueous suspension of Na‐MMT. The exfoliated morphology of the nanocomposites was confirmed by XRD and TEM. With the aim of improving morphology and mechanical properties of natural rubber latex (NRL) films, the synthesized Na‐MMT/PEI‐g‐PMMA nanocomposites were mixed with NRL by latex compounding technology. The results of SEM and AFM analysis showed that the surface of NRL/Na‐MMT/PEI‐g‐PMMA film was smoother and denser than that of pristine NRL film while Na‐MMT was dispersed uniformly on the fracture surface of the modified films, which suggested the good compatibility between NRL and Na‐MMT/PEI‐g‐PMMA. The tensile strength of NRL/Na‐MMT/PEI‐g‐PMMA films was increased greatly by 85% with 10 phr Na‐MMT/PEI‐g‐PMMA when Na‐MMT content was 3 wt % and the elongation at break also increased from 930% to 1073% at the same time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43961.  相似文献   

3.
Hydroxyalkyl derivatives of polyaminostyrene (PAS), polyallylamine (PAA), and polyethyleneimine (PEI) containing a 2,3‐dihydroxypropyl moiety with a high degree of modification were synthesized. The chemical structures of the polymer transformation products were characterized with elemental analysis, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, and 13C‐NMR spectroscopy in the solid state. PAS reacted with glycidol and formed poly[N‐(2,3‐dihydroxypropyl)aminostyrene] with a high degree of functionalization. PAA revealed primarily the graft polymerization of glycidol. In the case of PEI, primary amino groups allowed the formation of an N‐derivative of 3‐aminopropanediol‐1,2. The PAA‐based sorbent showed a high sorption capacity toward boron ions in both acidic and alkaline media. From the sorption isotherm data, the maximum sorption capacity of this sorbent at pH 4 was determined to be 3 mmol/g. The PAS‐based resin maintained a high capacity between pH 9 and 12; the optimum pH was 12. The sorption capacity was 1.7 mmol/g. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43939.  相似文献   

4.
Polyaniline (PANI) nanofibers are synthesized by dilute polymerization and subsequently used for layer-by-layer assembly with poly(acrylic acid) (PAA). The chemical synthesized PANI nanofibers are characterized by SEM and TEM. In addition, the LBL assembly process is characterized by SEM, UV-vis spectrometry and electrochemical methods. PAA inside the multilayer film can dope nanostructured PANI effectively and shift its electroactivity to a neutral pH environment. Compared with PANI/PAA film co-deposited on the electrode by electropolymerization, the redox behavior of PANI/PAA multilayer via LBL assembly is more reversible, indicating the enhancement of electron transfer. The obtained nanostructured PANI/PAA multilayer films are very stable and show high electrocatalytic ability toward H2O2, which makes it an ideal substrate for H2O2 detection and offers great promise for biosensing.  相似文献   

5.
A series of pH‐sensitive composite hydrogel beads, carboxymethyl cellulose‐g‐poly(acrylic acid)/attapulgite/sodium alginate (CMC‐g‐PAA/APT/SA), were prepared by combining CMC‐g‐PAA/APT composite and SA, using Ca2+ as the ionic crosslinking agent and diclofenac sodium (DS) as the model drug. The effects of APT content and external pH on the swelling properties and release behaviors of DS from the composite hydrogel beads were investigated. The results showed that the composite hydrogel beads exhibited good pH‐sensitivity. Introducing 20% APT into CMC‐g‐PAA hydrogel could change the surface structure of the composite hydrogel beads, decrease the swelling ability, and relieve the burst release effect of DS. The drug cumulative release ratio of DS from the hydrogel beads in simulated gastric fluid was only 3.71% within 3 hour, but in simulated intestinal fluid about 50% for 3 hour, 85% for 12 hour, up to 90% after 24 hour. The obtained results indicated that the CMC‐g‐PAA/APT/SA hydrogel beads could be applied to the drug delivery system as drug carriers in the intestinal tract. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Hydrogels were synthesized from hyperbranched polyglycerol (HPG) and acrylic acid through free‐radical polymerization with HPG as the crosslinker. The HPG/poly(acrylic acid) (PAA) hydrogel could absorb cationic dyes in aqueous solutions because of the existence of a porous structure and the large numbers of hydroxyl and carboxylic groups. With methyl violet chosen as a model compound, the HPG/PAA hydrogel reached a maximum adsorption of 394.12 mg/g at a feed concentration of 1 g/L. The highest removal ratio of 98.33% was observed at a feed concentration of 50 mg/L. The effects of the pH, contact time, and feed concentration on the dye adsorption were investigated. The dye adsorption data fit well with the pseudo‐second‐order and Langmuir models. We believe that the HPG/PAA hydrogels could perform well in appropriate applications in the removal of cationic dyes from aqueous solutions because of their high adsorption capacity and environmental friendliness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42951.  相似文献   

7.
The free‐standing, flexible, and ferroelectric films of poly(vinylidenefluoride‐co‐hexafluoropropylene) [P(VDF‐HFP)] were prepared by spin coating method. The ferroelectric phase of the films was enhanced by adding magnesium nitrate Mg(NO3)2 in different wt % as the additive during the film fabrication. The effects on the structural, compositional, morphological, ferroelectric, dielectric, and leakage current behaviors of the films due to the addition of salt were analyzed. Based on the X‐ray diffraction (XRD) patterns and Fourier Transform Infrared (FTIR) spectra, it is confirmed that the addition of Mg(NO3)2 promotes the electroactive β phase that induces the ferroelectric property. The fiber‐like topography of the films exhibits a nodule‐like structure, and the roughness of the films increases by the addition of Mg(NO3)2. The ferroelectric studies show the higher polarization values for the composite films than that of the plain P(VDF‐HFP) film. The Piezo‐response force microscope images also confirm the domain switching behavior of the samples. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44008.  相似文献   

8.
This work focuses the preparation of polymer‐silver nanocomposite (Ag‐Nc) dense free standing films and nonwoven fabric supported porous ultrafiltration membranes with improved membrane performance and long‐term antibiofouling properties. New polyacrylonitrle‐based Ag‐Ncs, poly(acrylonitrle‐co‐acrylic acid)‐silver (PAN‐co‐PAA‐Ag) containing 35 wt% of PAA and 0.35–0.65 wt% of Ag‐nanoparticles (Nps) were synthesized and used as additives for the fabrication of PAN‐based (PAN/PAN‐co‐PAA‐Ag) Ag‐Nc porous membranes and dense‐free standing films. The Ag‐Nps were homogeneously dispersed into the PAN‐co‐PAA random copolymer matrix. The prepared membranes (PAN/PAN‐co‐PAA‐Ag) showed combination of properties such as excellent antimicrobial activity towards both Gram Negative and Gram Positive bacteria (prevent biofilm formation), improved protein antifouling properties, and enhanced water flux when compared to neat PAN‐based membrane. The antimicrobial properties, hydrophilicity, and the water flux of various membranes follow the following order for the membranes PAN < PAN/PAN‐co‐PAA < PAN/PAN‐co‐PAA‐Ag. Extraneous addition of small amount of polyethylene glycol (PEG) during preparation of additive i.e. [PEG + PAN‐co‐PAA]‐Ag further improved the protein antifouling properties of the PAN‐based membranes (PAN/[PEG+PAN‐co‐PAA‐Ag]). The dispersed Ag‐Nps were stable on the surface of phase inverted membranes for long period of time and PAN/PAN‐co‐PAA‐Ag membranes are therefore suitable for long‐term water treatment under bacterial environment. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
The layer-by-layer (LbL) assembled multilayer films are widely used in controlled drug delivery. Here, hydrogen-bonded LbL multilayer films were assembled through alternating deposition of poly(vinylpyrrolidone) (PVPON) and poly(acrylic acid) (PAA) on glass slides. Methylene blue (MB) was used as a model drug to investigate the loading and release ability of the prepared multilayer film. The results showed that the loading rate of MB was greatly influenced by pH value of the dye solution, and the release rate was controlled both by ionic strength and pH value of immersing solution. The result also indicated that the loading and release of MB were reversible and can be repeated many times. It suggested that the PVPON/PAA multilayer film had potential applications in drug delivery and controlled release.  相似文献   

10.
To enhance the oxygen‐barrier and water‐resistance properties of poly(vinyl alcohol) (PVA) and expand its food packaging applicability, five crosslinked poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) blend films were prepared via esterification reactions between hydroxyl groups in PVA and carboxylic acid groups in PAA. The physical characteristics of the blends, including the thermal, barrier, mechanical and optical properties, were investigated as a function of PAA ratio. With increasing PAA content, the crosslinking density was significantly increased, resulting in changes in the chemical structure, morphology and crystallinity of the films. The oxygen transmission rate of pure PVA decreased from 5.91 to 1.59 cc m?1 day?1 with increasing PAA ratio. The water resistance, too, increased remarkably. All the blend films showed good optical transparency. The physical properties of the blend films were strongly correlated with the chemical structure and morphology changes, which varied with the PAA content. © 2016 Society of Chemical Industry  相似文献   

11.
Abstract

The electrostatic layer-by-layer (LbL) assembled multilayer films were widely used in the biomedical technology such as drug delivery. In this work, loading capabilities and release behavior of the multilayer films chitosan (Cts) and poly(acrylic acid) (PAA) were studied. The multilayer films were assembled by LbL technique through alternating deposition of Cts and PAA on glass slides, using methylene blue (MB) as a model drug. All the results showed that the LBL film’s loading and release efficiency greatly controllable by pH and ionic strength of the solution. It suggested that the Cts/PAA LBL film had potential applications in drug delivery and controlled release studies.  相似文献   

12.
The organic–inorganic hybrid multilayered composites are prepared using a unique combination of poly[(o‐cresyl glycidyl ether)‐co‐formaldehyde] (CNER), amino modified montmorillonite (NH2‐MMT), and polyethyleneimine (PEI). This tricomponent composite multilayer PEI(CNER/NH2‐MMT/PEI)n deposited via layer ‐ by ‐ layer technique is based upon synergistic combination of covalent and hydrogen bonding. The growth of multilayer was monitored using UV–vis spectroscopy and ellipsometry. When subjected to optical analyses, the prepared multilayered composite films revealed profound optical transmittance ~83%–87%. The surface morphological analysis by atomic force microscopy and scanning electron microscopy revealed uniform arrangement of organic–inorganic components with relative increase in intensity of elements (C, N, O, Si) as confirmed by X‐ray photoelectron spectroscopy studies. The multilayered composites possess 1.99 GPa hardness making them potential candidate for a number of applications where mechanical strength is desired. Moreover, significant resistance against alkaline and organic solvents at minimal deterioration of circa 0.12% has also been observed for the prepared films. The epoxy clay based thin films being robust, scratch resistant, hydrophilic, chemically inert, and mechanically strong are potential candidates for advanced environmental applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46079.  相似文献   

13.
The dispersion of carbon nanotubes (CNTs) in water by poly(acrylic acid) (PAA) and poly(amide imide) (PAI) block copolymers and homo‐PAA is investigated. Poly(acrylic acid)‐block‐poly(amide imide) (PAA‐block‐PAI), poly(acrylic acid)‐block‐poly(amide imide)‐block‐poly(acrylic acid) (PAA‐block‐PAI‐block‐PAA), and heteroarm star block copolymer poly(acrylic acid)2poly(amide imide) (PAA2PAI) with similar molecular weights and PAA contents are used as the copolymers. The dispersion of CNTs is observed by dynamic light scattering and ultraviolet‐visible spectroscopy. The presence of the hydrophobic sequence improves the dispersion. PAA2PAI has the best dispersion ability, followed in order by PAA‐block‐PAI‐block‐PAA, PAA‐block‐PAI, and homo‐PAA. In the dry state, aggregates of CNT are observed by transmission electron microscopy (TEM) in the mixture with PAA‐block‐PAI and homo‐PAA. The adhesion of the copolymers to CNT is also observed by TEM and is due to the high affinity between hydrophobic PAI and CNT. In particular, PAA2PAI and PAA‐block‐PAI‐block‐PAA well cover the CNTs. The presence of PAI and the PAA location are important for the dispersion of CNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43461.  相似文献   

14.
To investigate the effect of reactive end‐capping groups on film‐forming quality and processability, a series of molecular weight‐controlled aromatic poly(amic acid) (PAA) resins functionalized with phenylethynyl end groups were prepared via the polycondensation of 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), para ‐phenylenediamine (PDA), and 4‐phenylethynyl phthalic anhydride (PEPA) served as molecular‐weight‐controlling and reactive end capping agent. The PAA resins with relatively high concentrations endow enhanced wetting/spreading ability to form PAA gel films by solution‐cast method which were thermally converted to the fully‐cured polyimide (PI) films. The mechanical and thermal properties of PI films were investigated as a function of PAA molecular weights (Mn ) and thermal‐curing parameters. Mechanical property, dimensional stability and heat resistance of the fully‐cured PI films with PAA Mn > 20 ×103 g mol?1 are found to be better than that of their unreactive phthalic end‐capped counterparts. The covalent incorporation of chain‐extension structures in the backbones, induced by thermal curing of phenylethynyl groups, might facilitate yielding a higher degree of polymer chain order and consequently improved resistance strength and elongation at break to tensile plastic deformation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45168.  相似文献   

15.
Poly[methacryloxypropylheptacyclopentyl‐T8‐silsesquioxane (MAPOSS)‐co‐3‐methacryloxypropyltris(trimethylsiloxy)silane (SiMA)] was synthesized through free radical polymerization. The physical and carbon dioxide (CO2) sorption properties of the copolymer membranes were investigated in terms of the MAPOSS content. As the MAPOSS content increases, the membrane density increased, suggesting a decrease in the fractional free volume. In addition, the thermal stability was improved with increasing the MAPOSS content. These are because of the polyhedraloligomericilsesquioxane (POSS) units that restrict the high mobility of poly(SiMA) segments. The glass transition temperature, Tg of the copolymers was single Tg based on the differential scanning calorimetry, suggesting that the copolymers were random and not phase separation. Based on the CO2 sorption measurement, the POSS units play a role in reducing Henry's dissolution by suppressing the mobility of the poly(SiMA) component, while POSS units increase the nonequilibrium excess free volume, which contributes to the Langmuir dissolution. Based on these results, the introduction of MAPOSS unit is one of the effective ways to improved the thermal stability and CO2 sorption property due to the enhancement of the polymer rigidity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The compatibility of ternary blends of poly(ethylene naphthalate)/poly(pentamethylene terephthalate)/poly(ether imide) (PEN/PPT/PEI) was studied by examining the transesterification of PEN and PPT. ENPT copolymers were formed in situ as compatibilizers between PPT and PEI components in ternary blends. Differential scanning calorimetric (DSC) results for ternary blends showed the immiscibility of PEN/PPT/PEI, but ternary blends of all compositions were phase‐homogeneous after heat treatment at 300°C for more than 60 min. Annealing samples at 300°C yielded amorphous blends with a clear, single glass transition temperature (Tg), as the final state. Additionally, ENPT copolymer improved the compatibility of ENPT/PPT/PEI blends, yielding a homogeneous phase in the ENPT‐rich compositions. The morphology of the ENPT/PPT/PEI blends was altered from heterogeneous to homogeneous by controlling the concentration of PPT in the ENPT copolymers as well as the concentration of the ENPT copolymers. Moreover, a homogeneous phase with a clear Tg was observed when the concentration of PPT in the ENPT copolymer fell to 70 wt% in the ENPT/PEI = 50/50 blends. Experimental results indicate how the concentration of PPT in the ENPT copolymer affects miscibility in the ENPT/PEI blends. POLYM. ENG. SCI. 46:337–343, 2006. © 2006 Society of Plastics Engineers  相似文献   

17.
ABA‐type triblock copolymers were synthesized using 4,4‐(hexafluoroisopropylidene) diphthalic anhydride‐2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (6FDA‐TeMPD) and poly(methyl methacrylate) (PMMA). The films were characterized by determining the effects of different content ratios and thermal decomposition of PMMA block on CO2 sorption properties. TGA results showed that a thermal labile block can be completely decomposed under a previously reported thermal condition. SEM results presented that the asperity was micro‐phase separation caused by the PMMA block content rate. Numerous pores with sizes of approximately 10 to 50 nm were detected on Block(28/72) and Block(10/90). The isotherms of all films fitted the dual‐mode sorption model, and CO2 sorption decreased with increased PMMA content rate. Infinite‐dilution CO2 solubility depended on the Langmuir's site of each polymer because SH0/S0 of PI and Block(PI/PMMA) varied from 0.84 to 0.92 CO2 affinity was increased by thermal treatment as indicated by the higher b and S0 values of thermally treated films than those of nontreated films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42208.  相似文献   

18.
A controlled‐release preparation of diclofenac sodium for transdermal administration has been developed. Poly(vinyl alcohol) (PVA) and PVA/poly(acrylic acid) (PAA) alloy membranes were prepared from a solvent‐casting technique using different PVA/PAA (v/v) ratios. The release of the drug from the membrane was evaluated under in vitro conditions at pH 7.4. The delivery system provided linear release without time lag, burst effect, and boundary layer resistance. Effects of variables such as film thickness and PVA/PAA ratio on the permeation behavior of the polymeric membranes were discussed. The optimal PVA/PAA was determined as 50/50. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 72–77, 2004  相似文献   

19.
Blends of nylon 6 (Ny6) with poly(acrylic acid) (PAA) were prepared in film form from solutions in a mixture of formic acid and water by evaporating the solvent. The miscibility and phase constitution of the binary blends obtained over a wide composition range (5/95–95/5) were examined by wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and dynamic mechanical measurements. A Ny6 homopolymer film and Ny6/PAA blends with PAA concentrations ≥ 50 wt% exhibited a WAXD profile stemmed from the coexistence of two different crystalline modifications of Ny6, i.e. the α and γ forms. Above 50 wt% PAA content, the solution-cast blends showed no definite crystallinity. It was found by DSC thermal analysis that the polymer pair is substantially miscible in the non-crystalline state, since a single glass transition temperature (Tg) was situated between the Tgs of the two homopolymers at every composition; however, the Tg versus composition plots did not follow a monotonic function but yielded a peak maximum at a PAA concentration of c. 25 wt%. In order to interpret this phenomenon, attention was given to the following point revealed by dynamic mechanical measurements: at the compositions of Ny6/PAA = 100/0–50/50, a phase of low regularity such as a nematic structure is formed in the cast films.  相似文献   

20.
A convenient approach has been developed for the preparation of microsize hydrogels composed of crosslinked poly(acrylic acid) (PAA) and poly(N‐isopropylacrylamide) (PNIPAm). First, semi‐interpenetration polymer networks of hydropropylcellulose (HPC) and PNIPAm‐co‐PAA copolymer are formed through the copolymerization and crosslinking of monomer acrylic acid and N‐isopropylacrylamide in HPC aqueous solution. After the selective removal of HPC from networks due to ionization of PAA units and disruption of hydrogen bonding with increasing pH, PNIPAm‐co‐PAA microgels are obtained, whose volume is confirmed to be responsive to both temperature and pH. Doxorubicin hydrochloride (Dox) can be encapsulated in PNIPAm‐co‐PAA microgels with high drug loading driven by the electrostatic interaction, and a sustained‐release characteristic of Dox from the microgels is observed under physiological pH value and temperature. In vitro cell experiments, the drug‐loaded microgels can be taken up by LoVo cells and release their payload in cell cytoplasm without loss of drug efficacy. This indicates that PNIPAm‐co‐PAA microgels might be a potential drug delivery carriers especially for water‐soluble or polypeptide drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号