首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Poly(vinylidene fluoride) (PVDF)/ poly(ethylene–butylacrylate–glycidyl methacrylate) (PTW) blends were directly prepared by melt blending and the interaction and properties of PVDF/PTW blends were explored systematically. The crystallization behavior, thermal stability, dynamic mechanical property, and morphological features of PVDF/PTW blends with different ratios have been studied by XRD, attenuated total reflection Fourier transform infrared spectroscopy, differential scanning calorimeter analysis (DSC), thermal gravimetric analysis (TGA), dynamic mechanical analysis, and polarized optical microscopy (POM). The results showed that the crystalline structure of neat PVDF was dominantly α‐phase crystalline and the incorporation of PTW had no effect on the crystalline structure of PVDF in the PVDF/PTW blends. And Tg of PVDF in PVDF/PTW blends shifted to higher temperature compared with that of neat PVDF, indicating the weak interaction between PVDF and PTW, which was corresponding to DSC and TGA results. An increase in the coarseness and ring‐band spacing observed from POM further substantiated the weak interaction between PVDF and PTW. This work provided a way for preparing improved properties of PVDF/PTW blends for the coating material. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43908.  相似文献   

2.
This work is aimed at investigating the influence of fibrillar morphology of deformed Polyamide 6 (PA6) droplets dispersed in Polypropylene (PP) matrix on the melt viscoelastic behavior of their blends. The blends of PP with various amounts of PA6 (1%, 6%, 10%, and 20%) were prepared by melt mixing in a co‐rotating twin screw extruder and fibrillated by fiber spinning process. Scanning Electron Microscopy revealed that the PA6 spherical droplets form fibrillar inclusions after fiber spinning. The steady and transient shear rheological responses of samples were evaluated in both linear and nonlinear ranges of deformation. Non‐terminal behavior of storage modulus at low frequency appeared as a typical characteristic of fibrillar morphology whose width and value depend on fibril growth. Storage modulus and complex viscosity of the blends containing PA6 fibrillated structure were remarkably enhanced compared to as‐extruded samples. The fibrillar‐induced elasticity of the fibers is a distinguishable behavior which was revealed by conducting transient stress and creep‐recovery measurements and upon appearing mature fibrils, elasticity of the polymer blend fibers increased significantly. POLYM. ENG. SCI., 58:1251–1260, 2018. © 2017 Society of Plastics Engineers  相似文献   

3.
Poly(vinylidene fluoride) (PVDF)/polyamide 12 (PA12) blends showed new peaks in XRD profile with increasing PA12 and the crystallinity of PA12 significantly decreased with the addition of PVDF. PVDF showed three relaxation regions at about −40, 40, and 100°C, respectively, and glass transition temperature (Tg ) of PA12 increased in blends (10.8→30.14°C) and α‐relaxation of PVDF decreased from 100.26 to 86.46°C. Complex viscosities (η*) vs. composition curve showed a great positive deviation in PVDF‐rich and a small negative deviation in PA12‐rich blends. The N—H and C=O stretching band of PA12 shifted slightly toward higher wavelength, and from curve‐fitted data the area of hydrogen‐bonded C=O stretching bands of PA12 decreased with the addition of PVDF, especially in the 30/70 blend, implying the existence of interactions between the β‐hydrogen atom of PVDF and amide carbonyl group of PA12 in the blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1374–1380, 2000  相似文献   

4.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

5.
To overcome the fiber-spinning problem of poly(vinylidene fluoride) (PVDF) because of its high melt viscosity and rapid crystallization, polyamide 11 (PA11) with excellent melt spinning capability and good electret properties is incorporated to prepare blends by melt mixing. Their crystal structure, morphology, electrical polarization properties, and melt spinning performance are systematically characterized by various techniques. It is found that the incorporation of PA11 reduces the crystallinity of PVDF, increases its thermally stimulated discharge current, and reduces its viscosity. Therefore, the blends show much better melt spinning capability. For such blends, the addition of outstanding inorganic electret materials, lithium niobate (LiNbO3, LN) nanoparticles is found to further improve the materials’ electret properties. Such a strategy is proved to be successful in melt spinning PVDF electrets into fine fibers, which is beneficial to their applications in air filtration and other related fields. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48957.  相似文献   

6.
Cured elastomers are commonly dispersed in thermoplastics, but the reverse morphology has received little attention. The present work examines dispersions of 0.5–2 μm PA6 droplets in ethylene‐acrylic elastomer (AEM), created by melt blending. After cooling, the blends are compounded with amine curative and crosslinked. Uncrosslinked blends exhibit high bound rubber levels compared to N990 carbon black filled AEM, but similar viscosity at equal filler volume fraction. Crosslinking the blends produces strong, heat resistant vulcanizates with minimal Payne effect and good compression set resistance. These properties result from extensive AEM‐PA6 grafting, absence of filler‐filler contacts, and beneficial modification of the oxidation profile under diffusion limited conditions. The data show rubber‐filler grafting strongly influences filler reinforcing ability, but does not directly influence the Payne effect. Relative to unfilled AEM, silica and carbon black fillers accelerate oxidative degradation in proportion to their reinforcing ability, whereas PA6 has a stabilizing effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43995.  相似文献   

7.
The relaxation of carbon nanotube (CNT)‐filled PA6 droplets in PP matrix was studied after cessation of simple shear flows. The morphology evolutions of blends with various CNT contents in PA6 were probed by optical microcopy over time. It was shown that the retraction of deformed droplets accelerates with increasing CNT content in PA6. As evidenced by linear rheological measurements, gradual formation of elastic structures within the droplets was found responsible for such observations. The pre‐shearing flow was varied to investigate the effects of different flow histories on the kinetics of relaxation. By increasing the shear‐rate of the flow prior to relaxation, the relaxation kinetics slowed down to some extent. The slowed‐down kinetics was attributed to the partial rupture of the elastic structures within PA6. This idea was evidenced by performing the startup of steady shear flow experiments on PA6/CNT nanocomposites. The final morphology of the blends after the melt blending process was analyzed. The average droplet size was found to increase with increasing the CNT content. Also, the distribution of the droplet sizes became broader as a result of the increased viscosity and elasticity ratios. POLYM. ENG. SCI., 56:51–60, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Polyamide 6 (PA6) as a cost-effective polar polymer and barium titanate (BT) as piezoelectric ceramic nanofiller were melt compounded with poly(vinylidene fluoride) (PVDF) matrix to enhance the β electroactive phase. A series of samples with two blending ratios of PVDF/PA6 (90/10 and 70/30 [wt%/wt%]) each containing 1, 3, and 5 wt% of BT were prepared. The SEM results revealed that the addition of BT to the neat blends refined the biphasic morphology which is mainly due to selective localization of BTs in PA6 dispersed phase as confirmed by TEM observation and wetting parameter predictions. The EDX analysis demonstrated a uniform distribution of BT nanoparticles in the filled systems. FTIR and XRD results showed that β content increased as a result of blending while the α phase was suppressed. The BT nanoparticles inclusion to the blends showed a synergistic effect on the β-polymorph content. These results in combination with the data derived from DSC (indicating reduction of the total crystallinity) complement the idea of β enhancement by the addition of BT nanoparticles and PA6 into PVDF.  相似文献   

10.
The crystallization and melting behavior of neat nylon‐6 (PA6) and multi‐walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt‐compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs composites instead of a single exotherm (TCC, 1) for the neat matrix. The formation of the higher‐temperature exotherm TCC, 2 is closely related to the addition of MWNTs. X‐ray diffraction (XRD) results indicate that only the α‐phase crystalline structure is formed upon incorporating MWNTs into PA6 matrix, independently of the cooling rate and annealing conditions. These observations are significantly different from those for PA6 matrix, where the increase in cooling rate or decrease in annealing temperature results in the crystal transformation from α‐phase to γ‐phase. The crystallization behavior of PA6/MWNTs composites is also significantly different from those reported in PA6/nanoclay systems, probably due to the difference in nanofiller geometry between one‐dimensional MWNTs and two‐dimensional nanoclay platelets. The nucleation sites provided by carbon nanotubes seem to be favorable to the formation of thermodynamically stable α‐phase crystals of PA6. The dominant α‐phase crystals in PA6/MWNTs composites may play an important role in the remarkable enhancement of mechanical properties. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
《Polymer》2007,48(1):356-362
The 20/80 blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene copolymer (ABS) in the presence of styrene–maleic anhydride copolymer (SMA) and multiwall carbon nanotubes (MWNT) were prepared using melt-mixing technique. Crystallization behavior of the PA6 phase in the blends was studied using DSC, WAXD and SAXS techniques. Blends' morphology was characterized by SEM. We observed fractionated crystallization of PA6 phase in 20/80 PA6/ABS blends. It was also observed that the phenomenon of fractionated crystallization was influenced by the presence of both SMA and MWNT. Blends' morphology revealed the presence of wide domain size distribution of PA6 droplets in the amorphous ABS matrix. On incorporation of either SMA or SMA modified MWNT, the average domain size of PA6 droplets was found to be finer up to 1 wt% SMA modified MWNT. Encapsulation of SMA copolymer layer on the MWNT surface was also evident from SEM micrographs. SAXS analysis revealed the formation of multiple lamellae stacking of PA6 phase in the presence or absence of SMA and MWNT in 20/80 PA6/ABS blends. This was attributed to the formation of less perfect crystallites formed during the cooling of melt at higher degree of supercooling.  相似文献   

12.
The crystallization kinetics of polyamide‐6 (PA‐6) and its nanocomposite (PNC) with 2% clay were studied, using a pressure dilatometer (50 MPa to 200 MPa) to follow the volume changes associated with the crystallization process. Isobaric experiments were carried out to evaluate the effect of pressure and clay on melting temperature (Tm) and crystallization temperature (Ta) of PA‐6. The melting temperatures of PA‐6 in the PNC were very close to those of PA‐6 alone at comparable pressures, but the crystallization temperatures in the PNC were lower than those of PA‐6 alone. The materials exhibited two crystallization zones in isothermal/isobaric experiments. The initial zone involved both the γ‐form and the α‐form of PA‐6, while in the latter zone the γ‐form was dominant. The Avrami equation was used to fit the isothermal/isobaric crystallization data. The Avrami exponent n was between 1.0 and 3.2 for the γ‐form of unfilled PA‐6, between 0.9 and 2.6 for the γ‐form in PNC and for the γ‐form of PA‐6 alone, n was between 1.0 and 2.1 and in PNC between 1.2 and 2.6. The Avrami rate constants (K) for PA‐6 and PNC depend on the experimental crystallization temperature as well as pressure. The rate of crystallization under similar conditions was higher for PNC. Infrared studies on compression molded PA‐6 and PNC samples, cooled from melt at different rates, confirm the formation of the γ‐form in the initial stages of crystallization, as well as its transformation into the α‐form at later stages. In the case of PNC, the γ‐form stabilized when the sample was quenched from melt.  相似文献   

13.
In this article, a particular phase morphology of immiscible polyamide 12/polystyrene (PA12/PS) blends prepared via in situ anionic ring-opening polymerization of Laurolactam (LL) in the presence of PS was investigated. SEM and FTIR were used to analyze the morphology of the blends. The results showed that PS is dispersed as small droplets in the continuous matrix of PA12 when PS content is less than 5 wt %. When the PS content is higher than 10 wt %, two particular phase morphologies appeared. First, dispersed PS-rich particles with the spherical inclusions of PA12 can be found when PS content is between 10 wt % and 15 wt %. Then, the phase inversion (the phase morphology of the PA12/PS blends changes from the PS dispersed/PA12 matrix to PA12 dispersed/PS matrix system) occurred when PS content is higher than 20 wt %, which is completely different from traditional polymer blends prepared by melt blending. The possible reason for the particular morphology development was illuminated through phase inversion mechanism. Furthermore, the stability of the phase morphologies of the PA12/PS blends was also investigated. SEM showed that the particular morphology is instability, and it will be changed upon annealing at 230°C for 30 min. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Poly(vinylidene fluoride)/polyamide 6/expanded graphite (PVDF/PA6/EG) composite is prepared via one-step melt extrusion. The EG is well dispersed with the addition of PA6 and mainly distributed in the PA6 phase due to the stronger affinity between them. As a result, the PVDF/PA6/EG sample presents higher dielectric permittivity than the PVDF/EG sample and maintain a low dielectric loss due to its sea-island phase structure, which impedes the formation of conductive path in the composite. The mean interlayer spacing of the EG in the polymer matrix decreases obviously due to its improved dispersion state, which is in favor of the phonon transportation in the composite. As a result, the PVDF/PA6/EG sample exhibits a significantly improved thermal conductivity of about 0.48 W m−1 K−1, which is 140% higher than that of the PVDF sample and 37% higher than that of the PVDF/EG sample. Moreover, the PVDF/PA6/EG sample presents higher Young's modulus and tensile strength than the PVDF/EG sample. While the elongation at break of the PVDF/PA6/EG sample is only a little lower than that of the PVDF/EG sample. This means that the tensile properties of the composite are not destroyed obviously by melt blending with the immiscible PA6.  相似文献   

15.
The melt rheological properties of binary uncompatibilized polypropylene–polyamide6 (PP–PA6) blends and ternary blends compatibilized with maleic anhydride‐grafted PP (PP–PP‐g‐MAH–PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value δ between these two series of data was obtained. In binary PP–PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and δ was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of δ increased with the dispersed phase composition. In ternary PP–PP‐g‐MAH–PA6 systems, when the compatibility between PP and PA6 was enhanced by PP‐g‐MAH, the elongation and break‐up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the δ values of the ternary blends and the larger the positive deviation. Unlike uncompatibilized blends, under high shear stress with higher dispersed phase content, the PP‐g‐PA6 copolymer in compatibilized blends was pulled out from the interface and formed independent micelles in the matrix, which resulted in reduced total apparent shear viscosity. The δ value decreased with increasing shear stress. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
In this study, the melt linear viscoelastic rheological properties of polyamide 6 (PA6)–acrylonitrile butadiene styrene terpolymer (ABS) immiscible blends were analyzed with the help of Coran and fractional Zener models (FZMs) to assess the microstructure of the blends. For this purpose, dynamic shear flow experiments and scanning electron microscopy investigations were performed. The nonzero value of the elastic modulus of the spring element (Ge) of the FZM for ABS‐rich blends was explained by the formation of a networklike structure because of the agglomeration of the rubber phases of the ABS matrix, whereas for the PA6‐rich blends with a high content of ABS, the interactions and/or interconnectivity of the ABS dispersed phase led to a nonzero value of Ge. The value of the fitting parameter of the Coran model (f) was near to 0.5 for the 50/50 blend; this was fully in agreement with the formed cocontinuous morphology for this blend composition. On the other hand, the f value for the blends with a matrix–droplet‐type morphology was near to zero for the PA6‐rich blends; this indicated the lower continuity of the ABS dispersed phase as a harder phase compared to the PA6 soft matrix, whereas the f value was near to 1 for ABS‐rich blends. This confirmed the formation of an interconnected networklike structure for this series of blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45423.  相似文献   

17.
Ideal membranes toward separation of stable oil/water emulsions should have surface hydrophilicity and submicron pores in the separating layer. However, electrospun membranes made from poly(vinylidene fluoride) (PVDF) cannot meet these requirements, failing to remove oil droplets from a stable oil/water emulsion. By doping with a certain polyamide 6 solution, surface hydrophilicity, and interconnected pores with submicron size are successfully achieved. As a result, separation of a stable emulsion with an efficiency above 99% is exhibited by the modified PVDF membranes. Moreover, underwater oleophobicity of the modified PVDF membranes imparts them with good antifouling performance. The modified PVDF membranes could have great potentials in practical stable oil/water emulsion separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44980.  相似文献   

18.
Influences of silica nanoparticles on the microstructural evolution of polyamide 6 (PA6)/polystyrene (PS) blends with varying blend ratios were investigated in confined shear flow. Hydrophilic silica nanoparticles were found to promote the formation of PA6 strings with excellent shape stability during shearing. It was ascribed to the promoted coalescence of PA6 droplets induced both by the significantly increased droplet viscoelasticity and confinement, and the reduced interfacial tension by adding silica nanoparticles. Additionally, the width and aspect ratio of droplets obtained by experiments were compared with the predictions of Maffettone–Minale, Minale, Shapira‐Haber, MMSH, and modified M models. Good agreements were found in the droplet width in blends with low nanoparticle concentrations, whereas the experimental aspect ratio showed a negative deviation to model predictions, which was attributed to the enhanced droplet viscoelasticity and the omitted droplet orientation angle in these models. © 2015 American Institute of Chemical Engineers AIChE J, 62: 564–573, 2016  相似文献   

19.
The effect of phase interaction induced by reactive compatibilization during high shear and extensional flow in polyamide (PA6) and ethylene‐co‐butyl acrylate (EBA) blends was studied using advanced dual bore capillary rheometer. The viscosity‐composition behavior of the uncompatibilized PA6/EBA blends exhibited negative deviation behavior from log‐additivity rule. The interfacial slip mechanism, operative between the matrix PA6 and dispersed EBA during shear flow was studied by the use of Lin's and Bousmina‐Palierne‐Utracki (BPU) model for viscosity for the blends under the processing conditions. On the other hand, the compatibilized PA6/EBA‐g‐MAH0.49/EBA blends with varying dispersed phase volume fraction show positive deviation behavior. The reactive compatibilizers EBA‐g‐MAH0.49 and EBA‐g‐MAH0.96 increased the phase interaction with adequate reduction in the dynamic interfacial tension, which favored the particle break‐up and stabilized the morphology in the compatibilized blends. The extensional viscosity of the blends has enhanced because of the inclusion of EBA in all the uncompatibilized and compatibilized blends. The melt elasticity and elasticity function were systematically studied from first normal stress coefficient functions (ψ1). The variation in the recoverable shear strain (γR), shear rate dependent relaxation time (λ) and shear compliance (Jc) under various shear rates were thoroughly analyzed for all the blend compositions. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
In order to overcome the brittle fracture characteristics of polyamides, the study on high efficiency toughening of polyamides is always a hot topic. In this article, n‐ethyl‐p‐toluene sulfonamide (N‐PTSA) was used as the toughening agent in polyamide 6 (PA6) matrix. The PA6/N‐PTSA composites were prepared by melt compounding method. The PA6 composites were analyzed systematically from aspects of mechanical properties, thermal properties, crystal structures, and hydrogen bonds. There existed an obvious toughening effect in PA6 composite with the addition of 7 wt % of N‐PTSA. Meanwhile, the tensile strength of the composite was not reduced. The addition of N‐PTSA induced the formation of α‐form crystals, higher crystallinities and lower density of hydrogen bonds in the composites, which was beneficial to improvement of the mechanical properties. Based on the above results, the molecular structure model of toughening mechanism of N‐PTSA in PA6 was established. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46527.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号