首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti-6Al-4V合金绝热剪切带的演化   总被引:5,自引:4,他引:1  
利用分离式霍普金森压杆(SHPB)技术,对双态组织和片层组织Ti-6Al-4V合金帽形试样进行动态加载实验,通过控制加载时间(50,60和80μs)来研究绝热剪切带随时间的演化过程.微观分析结果表明:两种组织中绝热剪切带的宽度有一个发展过程,随着入射波加载时间的延长,绝热剪切带逐渐变宽;当加载时间为60μs时,两种组织钛合金中的绝热剪切带演化过程相同,均是在剪切应力下微观组织的拉长、细化和碎化;当加载时间为80μs时,双态组织中绝热剪切带的演化过程仍然是带内晶粒的进一步细化,而片层组织中的绝热剪切带中可能发生了动态再结晶.绝热剪切带演化过程的不同导致了绝热剪切带宽度的差异.  相似文献   

2.
研究了名义成分为Ti-22Al-15Nb的Ti-Al系合金的微观组织和力学性能,以及在准静态和动态加载条件下的变形行为,并对其破坏机理进行了分析。微观组织研究表明,Ti-22Al-15Nb合金铸态组织为等轴晶,晶内主要由α2-Ti3Al相和B2-Ti2AlNb相组成,具有随机取向的片状α2相均匀分布在B2基相上。力学性能研究表明,合金在动态加载条件下表现出较优异的性能,其屈服强度为1 100 MPa,抗压强度为1 750 MPa,且在动态加载下具有更好的塑性。破坏机理分析表明,在准静态加载条件下,合金试样发生剪切破坏,微裂纹首先在α2相及α2相与B2相的相界处萌生,在最大剪应力方向上扩展形成主裂纹,最终导致合金试样破坏;在动态加载条件下,合金的破坏方式为绝热剪切破坏,即在与加载轴呈45°角的方向上形成绝热剪切带,随着应变的增大,裂纹在剪切带中萌生并扩展,最终破坏合金试样。  相似文献   

3.
细晶钨合金的绝热剪切敏感性   总被引:2,自引:1,他引:1  
采用粉末冶金法制备平均晶粒度<5μm细晶90W-Ni-Fe含金.利用HOPKINSON压杆装置,分别在0.9 MPa和1.4 MPa的冲击气压条件下对该合金进行一维应力冲击实验,并对冲击后的样品进行金相组织观测,考察其在一维应力冲击条件下的绝热剪切性能,分析细晶钨合金的绝热剪切敏感性.研究表明:晶粒细化有助于绝热剪切带的扩展,可以提高钨合金绝热剪切敏感性,使得烧结态细晶钨合金在一维冲击应力加载条件下就可以产生绝热剪切带.随着冲击(加载)气压的加大,绝热剪切现象更明显,冲击气压为1.4 MPa时剪切带宽度约为10μm,从而有助于材料在动态压缩条件下产生绝热剪切破坏,提高材料在穿甲过程中的"自锐"能力.  相似文献   

4.
通过热处理获得等轴组织、双态组织和魏氏组织的Ti6321合金,研究不同组织的Ti6321合金在动态压缩下的绝热剪切行为。利用分离式霍普金森压杆(SHPB)试验装置对帽形试样进行强迫剪切加载,结合扫描电子显微镜和金相显微镜,对其绝热剪切带和微观组织演化进行观察和分析。结果表明:Ti6321合金的绝热剪切敏感性与其组织密切相关,魏氏组织具有最高的绝热剪切敏感性,等轴组织与双态组织的绝热剪切敏感性接近。随着热处理温度的升高,双态组织的Ti6321合金初生α相含量降低,绝热剪切敏感性增大。冲击速度也会对Ti6321合金的绝热剪切行为产生较大影响,随着冲击速度提高,其绝热剪切敏感性提高。  相似文献   

5.
采用搅拌摩擦加工技术(friction stir processing,FSP)成功制备出平均晶粒尺寸为600 nm的超细晶2024铝合金,观察和测量了超细晶材料不同温度退火后的显微组织及室温力学性能,对超细晶材料的热稳定性进行研究,研究发现:当温度为150~200℃时,超细晶铝合金呈现退火强化现象,力学性能较退火前略有提高;当温度为250~350℃时,晶粒及析出相长大导致细晶强化及第二相强化作用减弱,超细晶材料的热稳定性较差。随着温度的升高,超细晶铝合金的晶粒和析出相逐渐粗化,呈现明显的软化现象。当温度为400℃时,细晶铝合金的晶粒尺寸已经超过2μm,受到高温固溶强化效应作用,材料的抗拉强度比350℃加热试样的抗拉强度提高了54 MPa。结果表明:退火温度为200℃时,超细晶材料的热稳定性最佳,超细晶材料的平均晶粒尺寸为0.807μm,硬度为HV110.7,抗拉强度为359 MPa。  相似文献   

6.
运用高真空电弧熔炼及单辊旋淬一体炉设备,以40 m/s的速度快淬制备出Sm2Fe17ZrNb0.4Cu0.2B0.2非晶合金薄带。为实现非晶合金薄带在较低的晶化温度下爆发性形核,在细化晶粒的同时改善微观组织均匀性,需提高晶化前原子有序度,因此对薄带在500℃下进行不同时间的预退火处理,研究不同预退火时间下非晶合金晶化演变过程。X射线衍射仪(XRD)和高分辨率透射电镜(HRTEM)分析结果表明:长时间的预退火处理对α-Fe相的析出影响较大;预退火温度为500℃时,预退火时间应不超过90 min;预退火时间过长导致晶相提前析出,晶化组织不均匀。  相似文献   

7.
采用熔体快淬及晶化退火工艺制备了单相Nd2Fe14B纳米晶合金。研究了添加Nb对Nd12.3Fe81.7-xNbxB6.0(x=0.5,1.0,1.5,2.0,2.5,3.0)系列合金的微观组织、磁性能和晶化行为的影响规律。结果表明:添加Nb可提高晶化温度并稳定非晶相;在退火晶化过程中,加入Nb后形成的析出相可以抑制晶粒长大,使晶粒细化且分布均匀,进而提高了材料的综合磁性能。通过对系列合金磁性能分析可知:Nd12.3Fe81.2Nb0.5B6.0合金在600℃退火处理10min后的磁性能最佳,磁能积(BH)m=141.13kJ.m-3,矫顽力Hci=867.95kA.m-1,剩磁Jr=1.02T。  相似文献   

8.
利用Hopkinson压杆试验系统对圆柱形试样进行室温动态压缩冲击试验,研究不同热处理制度下Ti-1023钛合金的微观组织、绝热剪切带的形成特征。结果表明,相变点以上固溶处理使Ti-1023合金组织晶粒尺寸增大,β晶界处析出细针状α相;相变点以下的固溶时效使晶粒内部析出大量球状α相,相变点以下的固溶双重时效处理的组织晶粒更为细小均匀。在较高应变率加载条件下,不同组织均表现出明显的应变率增强和增塑效应,具有明显的热塑性失稳特征。相变点以上固溶时效组织动态强度高,但塑性差,绝热剪切敏感性最大;相变点以下固溶单重时效组织最不易发生绝热剪切,但强度低;固溶双重时效组织比固溶单重时效组织的动态强度高,塑性较好,具有最好的抗冲击承载能力。  相似文献   

9.
将7039铝合金热轧板材在470℃/2 h条件下固溶后,分别进行T6处理、T73处理以及RRA处理.利用Hopkinson压杆技术对3种热处理态的7039铝合金进行冲击压缩实验,用光学显微镜和透射电镜对冲击后的试样进行组织观察,分析热处理制度对合金动态应力-应变行为和微观组织的影响.结果表明:经T6处理的7039铝合金在高速冲击加载时的绝热剪切敏感性明显低于T73和RRA处理的合金,经RRA处理的合金绝热剪切敏感性最大;不同热处珲状态的合金在应变率为3 000 s-1时,组织中均产生绝热剪切带以及变形带;合金在高速冲击加载过程中产生的绝热剪切带内部组织主要是一种强同复组织.  相似文献   

10.
本文研究了冷轧过程中不同的冷变形及退火工艺对薄板5182铝合金晶粒组织、拉伸性能与各向异性影响。研究结果表明,当退火温度在300℃时,5182合金中发生不完全再结晶。随着冷变形量的增加,拉伸强度先增加后降低,延伸率逐渐增加;当退火温度在320℃~380℃时,5182合金中发生完全再结晶,变形量为30%的试样晶粒发生异常长大形成粗大晶粒;而变形量大于50%的试样晶粒发生完全再结晶形成细小等轴晶。随着冷变形量的增加,拉伸强度略有增加,延伸率变化较小。  相似文献   

11.
为了研究EW75镁合金在不同温度、高应变率下的动态力学性能及变形机制,采用分离式Hopkinson冲击压杆装置(SHPB)对挤压态EW75镁合金进行了动态压缩实验,并利用金相显微镜(OM)和透射电子显微镜(TEM)对冲击后的试样进行了显微分析。结果表明:挤压态EW75镁合金沿ED方向在室温(20~25℃), 200和300℃3个温度的动态压缩载荷下,随应变率的提高具有正应变率强化效应,室温下2826 s~(-1)时具有最大动态工程压缩强度为764 MPa,而在300℃3344 s~(-1)时获得最大动态压缩断裂应变为20%;随着应变率和温度的提高,挤压态EW75镁合金的组织中孪晶的数量增加,再结晶晶粒发生增殖和长大,并有异常长大的晶粒和白亮带的形成;挤压态EW75镁合金的动态压缩变形机制为滑移和孪生两种方式进行,并存在绝热剪切变形,随着温度升高,有动态回复和强烈的再结晶发生。  相似文献   

12.
通过对7B52铝合金进行动态压缩实验和准静态拉伸试验,结合微观组织的OM、SEM和TEM分析,研究了应变速率和取向对7B52铝合金准静态和动态力学性能及断裂行为的影响。结果表明:随着应变速率的升高,7B52铝合金流变应力呈现出先升高后降低的趋势;同一应变速率下,轧向(L向)强度均大于横向(T向)。7B52铝合金准静态加载时为穿晶韧性断裂机制。动态加载时,7B52铝合金内形成了绝热剪切带,剪切带内发生了以晶粒转动为机制的动态再结晶,断裂机制为沿晶脆性断裂。  相似文献   

13.
采用500℃单道强烈温轧方法制备了晶粒尺寸约0.6 μm的亚微米钢.在不同温度下对部分试样进行了退火处理.结果表明,这种亚微米钢能够承受450℃的退火而无明显的晶粒长大;即使在550℃退火,其晶粒尺寸仍然在亚微米级.如此高的组织稳定性可以归因于钢中存在的大量弥散分布纳米析出相的钉扎效应.纳米析出相具有两种不同的尺寸级别,其中尺寸较大者的平均颗粒直径约30 nm,而尺寸较小者的平均颗粒直径略小于10 nm.  相似文献   

14.
通过在不同温度下等温奥氏体化,研究KT5331钢奥氏体晶粒长大行为,并探讨析出相对奥氏体晶粒长大行为的影响机理.研究表明,KT5331钢奥氏体晶粒长大可分为三个阶段:1075℃以下,由于含W和Nb的析出相钉扎作用,晶粒长大缓慢;1075℃以上,含W和Nb的析出相溶解,钉扎作用减弱,随加热温度和保温时间延长晶粒迅速长大;1225℃及以上,δ铁素体析出,晶粒尺寸随加热温度升高而急剧减小.通过拟合分别得到晶粒粗化温度以下(950~1075℃)和晶粒粗化温度以上(1100~1200℃)的晶粒长大模型.   相似文献   

15.
通过循环预拉伸应变-高温退火制备Al-Cu-Li合金单晶, 同时探讨循环预拉伸应变-高温退火过程中预拉伸应变量、循环应变退火次数、应变退火温度对Al-Cu-Li合金晶粒长大的影响以及晶粒长大的过程与机制。研究结果表明, 通过循环预拉伸应变退火可以使得合金晶粒异常长大, 并且成功制备出厘米级别的宏观粗大晶粒, 其长大机理主要为应变诱导晶界迁移(Strain-Induced Boundary Migration)形核再结晶异常晶粒长大。此外, 分别对Al-Cu-Li合金预拉伸应变量、循环应变退火次数以及应变退火温度对晶粒长大影响进行研究, 制定出较优的单晶制备工艺, 结果表明较优工艺为Al-Cu-Li合金经0.8%预拉伸应变后在540 ℃下退火48 h, 循环次数2~3次。   相似文献   

16.
采用光学显微镜(OM)、透射电镜(TEM)、抗拉强度和电导率测试等方法研究了不同温度时效后大型发电机转子用Cu-Ni-Si合金槽楔组织和性能变化规律。结果表明:合金在热挤压过程中发生动态回复与再结晶,热挤压后为再结晶组织,晶粒内部有贯穿整个晶粒的退火孪晶。在时效阶段屈服强度和抗拉强度随温度变化表现为先升高后下降的趋势,在430℃时过饱和固溶体发生有序化转变和第二相析出,基体上弥散分布的细小析出相和长程有序相会阻碍位错运动,提高力学性能。在550℃时效阶段合金处于过时效状态,析出相主要为Ni_2Si,已经明显长大,对位错阻碍作用减弱,合金力学性能下降,但电导率始终保持上升的趋势。随时效温度升高,试样拉伸断口形貌逐渐由解理型转变为韧窝型,表明合金塑性逐渐提高。实验结果表明,在430℃时效3 h Cu-Ni-Si合金具有最佳的综合性能,屈服强度为650 MPa,抗拉强度为760 MPa,电导率为43.2%IACS。  相似文献   

17.
利用高能球磨制备的纳米晶W(Co,C)过渡相粉末制备了纤维状WC硬质合金。采用X射线衍射(XRD)分析球磨粉末及不同温度烧结样品的相组成,并计算WC晶粒尺寸;通过矫顽力研究高能球磨粉末Co的存在方式以及固相烧结阶段粉末相转变和晶粒长大行为。结果表明:球磨粉末中矫顽力由0(球磨时间22h)逐渐增加,Co先固溶在W晶格中,随球磨时间增加析出;烧结温度为700~900℃时,矫顽力由0急剧增加,η相分解析出单磁畴的Co,WC晶粒长大较慢;烧结温度为1 050~1 250℃时,矫顽力下降,大量多磁畴Co出现,WC晶粒长大速度加快;烧结温度为900~1 050℃时,矫顽力几乎不变,WC晶粒长大缓慢;烧结温度超过1 250℃时,矫顽力缓慢增加,Co相晶型发生改变。  相似文献   

18.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

19.
本文对比研究了Ti-IF钢罩式退火工艺下的再结晶规律及连续退火工艺下再结晶规律。分别采用随炉升温到不同温度测定再结晶规律,和采用到温入炉保温100s出炉测定再结晶规律。模拟罩式退火采用两阶段随炉升温,所测试样的名义再结晶温度为620,实际的再结晶温度为660℃,实验钢在随炉升温至660℃下完成再结晶过程历时68min;700℃、720℃再结晶的新晶粒开始长大;800℃时,再结晶的晶粒等轴化。模拟连退采用快速升温到不同温度,试样到温入炉保温100s出炉空冷,660℃再结晶开始形核,700℃形核的数量开始增加,720气:形核数量急剧增加,800 ~840℃再结晶晶粒长大,晶粒均匀化,900℃发生二次再结晶,晶粒反常长大。  相似文献   

20.
《铝加工》2015,(4)
对喷射沉积法制备的Al Zn11Mg2Cu1合金在465℃、485℃、500℃三种固溶温度下进行了合金组织和性能的研究。结果表明,试验合金适宜的固溶处理制度为485℃,保温1h,水淬。分析表明,喷射沉积制备的合金的晶粒度为4~5 m,晶粒比较均匀。用TEM对峰时效态的试验合金进行了微观组织分析,合金经固溶处理和时效处理后,沉淀相首先沿晶界析出,然后在晶内析出,其尺寸一般为5~10nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号