首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 499 毫秒
1.
测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响   总被引:6,自引:0,他引:6  
2007-2009年,在田间条件下,以冬小麦品种济麦22为材料,以0-140 cm土层平均土壤相对含水量为指标设计4个测墒补灌试验处理:W0(土壤相对含水量为播种期80%+拔节期65%+开花期65%)、W1(土壤相对含水量为播种期80%+拔节期70%+开花期70%)、W2(土壤相对含水量为播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量为播种期90%+拔节期80%+开花期80%),研究不同水分处理对冬小麦氮素积累与转运、籽粒产量、水分利用效率及土壤硝态氮含量的影响。结果表明:(1)成熟期小麦植株氮素积累量为W1处理最高,W3处理次之,W0和W2处理最低,W0和W2处理间无显著差异;氮素向籽粒的分配比例为W2处理显著低于W1处理,W0、W1、W3处理间无显著差异。开花期和成熟期营养器官氮素积累量、营养器官氮素向籽粒中的转移量、成熟期籽粒氮素积累量均为W1>W3>W2>W0,各处理间差异显著。(2)随着小麦生育进程的推进,0-200 cm土层土壤硝态氮含量先降低后回升再降低,在拔节期最低。成熟期W0和W1处理0-200 cm土层土壤硝态氮含量较低,W2和W3处理120-200 cm土层土壤硝态氮含量较高。(3)W0处理小麦氮素吸收效率、利用效率和氮肥偏生产力最低;随灌水量的增加,氮素利用效率呈先升高后降低趋势;W1处理小麦对氮素的吸收效率和利用效率较高,氮肥偏生产力最高。W0处理水分利用效率较高,但籽粒产量最低;灌水处理籽粒产量、灌溉水利用效率和灌溉效益两年度均随测墒补灌量的增加而显著降低。在本试验条件下,综合氮素利用、籽粒产量、灌溉水利用效率及土壤中硝态氮的淋溶,W1是高产节水的最佳灌溉处理,在2007-2008年和2008-2009年度补灌量分别为43.83 mm和13.77 mm。  相似文献   

2.
测墒补灌对小麦光合特性和干物质积累与分配的影响   总被引:4,自引:1,他引:3  
Wang HG  Yu ZW  Zhang YL  Wang D  Shi Y  Xu ZZ 《应用生态学报》2011,22(10):2495-2503
以高产冬小麦品种济麦22为材料,研究了测墒补灌对小麦光合特性和干物质积累与分配的影响.结果表明:W2(拔节期补灌至相对含水量75%,开花期70%)和DW2(拔节后10 d补灌至相对含水量75%,开花期70%)灌浆后期旗叶光合速率和实际光化学效率分别高于W3(拔节期补灌至相对含水量80%,开花期70%)和DW3(拔节后10 d补灌至相对含水量80%,开花期70%)处理;W2和DW2开花期和成熟期干物质积累量、开花前贮藏干物质向籽粒的转运量和籽粒干物质分配量高于W1(拔节期补灌至相对含水量65%,开花期70%)和DW1(拔节后10d补灌至相对含水量65%,开花期70%)处理,水分利用效率和灌溉水生产效率显著高于W3和DW3处理.相同补灌水平下,DW2和DW3灌浆后期旗叶光合速率和实际光化学效率分别高于W2和W3处理,开花期干物质积累量及其向籽粒的转运量低于W2和W3处理,开花后干物质积累量、籽粒产量、水分利用效率和灌溉水生产效率高于W2和W3处理.DW2是本试验条件下的高产高水分利用效率灌溉方案.  相似文献   

3.
于2012—2014年两个小麦生长季,以全生育期不灌水(W_0)为对照,设置3个测墒补灌处理,即拔节和开花期使0~140 cm土层土壤平均相对含水量分别为65%(W_1)、70%(W_2)和75%(W_3),研究其对土壤水利用、小麦氮素积累转运和土壤硝态氮分布及籽粒产量的影响.结果表明:W_2处理土壤贮水消耗量及占总耗水量的比例和灌溉水占总耗水量的比例较高,且吸收利用100~140 cm土层土壤贮水量较高.开花期营养器官氮素积累量及开花后氮素积累量均为W_2、W_3W_1W_0,成熟期营养器官氮素积累量为W_3W_2W_1W_0,营养器官氮素向籽粒中的转移量和成熟期籽粒氮素积累量均为W2W3W1W0.成熟期0~60cm土层硝态氮含量表现为W_0W_1W_2W_3,80~140 cm土层为W3显著高于其他处理,140~200 cm土层各处理间无显著差异.W_2处理的籽粒产量、水分利用效率、氮素吸收效率及氮肥偏生产力均最高.在本试验条件下,综合考虑籽粒产量、水分利用效率、氮素吸收效率及土壤硝态氮的淋溶,W_2处理是高产节水生态安全的最佳灌溉处理.  相似文献   

4.
调亏灌溉对冬小麦耗水特性和水分利用效率的影响   总被引:12,自引:2,他引:10  
以高产中筋冬小麦品种济麦22为材料,在山东兖州小孟镇史王村进行田间试验,研究了调亏灌溉对冬小麦耗水特性和水分利用效率的影响.结果表明:在全生育期降水228 mm条件下,W1(土壤相对含水量:播种期80%+拔节期70%+开花期70%)和W4(土壤相对含水量:播种期90%+拔节期85%+开花期85%)处理总耗水量高于W0(土壤相对含水量:播种期80%+拔节期65%+开花期65%)、W2(土壤相对含水量:播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量:播种期90%+拔节期80%+开花期80%)处理,W1和W4处理间无显著差异;W1处理增加了0~200 cm土层土壤贮水消耗量,降低了小麦拔节至开花期的耗水模系数,提高了开花至成熟期的耗水模系数;W4处理在开花至成熟期、拔节至开花期的耗水量和耗水模系数均较大.调亏灌溉条件下,W0处理水分利用效率较高,但产量最低;随灌溉量增加,其他处理水分利用效率呈先增加后降低的趋势.耗水量最高的W1和W4处理产量也最高,W1处理灌溉水利用效率和灌溉效益均高于W4处理,为本试验条件下高产节水的最佳处理.  相似文献   

5.
不同施氮量下灌水量对小麦耗水特性和氮素分配的影响   总被引:6,自引:0,他引:6  
研究了不同施氮量条件下灌水量对高产小麦耗水特性和氮素分配利用的影响。设置4个施氮水平:0kg·hm-2(N0)、120kg·hm-2(N1)、210kg·hm-2(N2)和300kg·hm-2(N3),在每个施氮水平下设置4个灌水量处理:不浇水(W0)、底墒水+拔节水(W1)、底墒水+拔节水+开花水(W2)、底墒水+拔节水+开花水+灌浆水(W3),每次灌水量60mm。结果表明:(1)在N0水平下W0处理日耗水量以拔节至开花期最高,在N1水平下,拔节至开花期日耗水量与开花至成熟期的无显著差异。同一施氮水平下,小麦开花后总耗水量、耗水模系数和日耗水量随灌水量的增加而提高,但产量随灌水量的增加先升高后降低。(2)同一施氮水平下,成熟期W1处理20—140cm各土层土壤含水量低于W2和W3处理,140—200cm土层土壤含水量与W2处理无显著差异;W1处理0—40cm土层土壤硝态氮含量及植株氮素在籽粒中的分配比例高于W2和W3处理,100—140cm土层土壤硝态氮含量及植株氮素在营养器官中的分配量和分配比例低于W2和W3处理。表明灌溉底墒水和拔节水的W1处理,促进了小麦对20—140cm土层土壤水的吸收利用,减少了土壤硝态氮向100cm以下土层的淋溶,而且有利于营养器官中氮素向籽粒的再分配,水分和氮素利用效率较高。(3)在试验条件下,施纯氮210kg·hm-2、灌溉底墒水和拔节水的N2W1处理,籽粒产量最高,水分利用效率和氮素利用效率较高,可供生产中参考。  相似文献   

6.
为研究依据不同土层的土壤质量含水量进行测墒补灌对小麦(Triticum aestivum)拔节期与开花期旗叶荧光特性和水分利用效率的影响, 2011-2012和2012-2013年度两个小麦生长季, 设置0-20 (D1)、0-40 (D2)、0-60 (D3)和0-140 cm (D4) 4个土层进行处理, 测定土壤质量含水量, 以各土层平均土壤相对含水量在拔节期为65%和在开花期为70%为目标相对含水量进行补灌, 全生育期不灌溉为对照(D0)。结果表明: (1) D2处理拔节至开花期40-100 cm土层和开花至成熟期40-140 cm土层的土壤贮水消耗量高于其他处理, 开花至成熟期是小麦贮水消耗的最大时期。(2)开花后旗叶水分利用效率、PSII潜在活性(Fv/Fo)、PSII电子传输活性(Fm/Fo)、相对电子传递速率(ETR)和光化学猝灭系数(qP) D2处理最高, D3次之, D0最低。(3)两个小麦生长季, 各处理的籽粒产量为D2 > D3 > D1 > D4 > D0, D2的水分利用效率分别为20.19 kg·hm-2·mm-1和21.92 kg·hm-2·mm-1, 高于D0、D3和D4处理, 与D1处理间无显著差异。综合分析, 小麦拔节期和开花期依据0-40 cm土层的土壤质量含水量进行测墒补灌可兼顾高产和高水分利用效率。  相似文献   

7.
推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响   总被引:2,自引:0,他引:2  
王红光  于振文  张永丽  王东  石玉 《生态学报》2012,32(6):1861-1870
摘要:2007—2008年度以高产冬小麦品种济麦22为材料,设置2个拔节水灌溉时期,为拔节期和拔节后10 d;3个目标相对含水量,灌水后0~140 cm土层土壤相对含水量分别达到65%、75%、80%,以W1、W2、W3表示拔节期灌水处理,DW1、DW2、DW3表示拔节后10 d灌水处理;开花期均灌水至0~140 cm土层土壤相对含水量为70%,研究推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响。结果表明:(1)W2和DW2处理有利于提高0~60 cm土层土壤硝态氮含量,促进籽粒氮素积累;营养器官贮藏氮素向籽粒的转运量、籽粒产量和氮肥偏生产力分别高于W1和DW1,与W3和DW3处理无显著差异;开花后植株氮素积累量、籽粒蛋白质含量和水分利用效率分别高于W3和DW3,是拔节期和拔节后10 d灌水的最优处理。(2)W2和DW2处理比较,DW2成熟期100~140 cm土层硝态氮残留量低于W2,籽粒产量、籽粒蛋白质含量、氮素吸收效率、氮肥偏生产力和水分利用效率均显著高于W2,是本试验条件下的最佳灌水方案。2008—2009生长季试验各处理变化趋势同2007—2008年度。  相似文献   

8.
夏闲期轮耕对小麦田土壤水分及产量的影响   总被引:11,自引:0,他引:11  
Hou XQ  Wang W  Han QF  Jia ZK  Yan B  Li YP  Su Q 《应用生态学报》2011,22(10):2524-2532
2007-2010年在宁南旱区研究了夏闲期免耕/深松/免耕(T1)、深松/免耕/深松(T2)、连年翻耕(CT)3种耕作方式对麦田土壤水分及产量的影响.结果表明:经过3年夏闲期T1和T2处理后,农田土壤蓄水效率平均分别较连年翻耕处理提高15.2%和26.5%;T1和T2处理的降水潜在利用率较高,分别达到37.8%和38.5%,降水生产效率平均分别较连年翻耕处理提高9.9%和10.7%.夏闲期轮耕能显著降低休闲期的土壤无效蒸发,有效保蓄小麦生长期的土壤水分.在冬小麦生长前期,T1和T2处理0~200 cm土层土壤水分平均分别较连年翻耕处理增加6.8%和9.4%;在拔节-抽穗-灌浆期,与连年翻耕处理相比,两处理可显著提高0 ~ 200 cm土层土壤蓄水量,对作物产量的贡献率较高.不同轮耕模式在增加作物耗水量的同时也提高了作物产量及水分利用效率,与CT处理相比,3年T1和T2处理作物耗水量平均分别提高5.2%和6.1%,产量分别增加9.9%和10.6%,作物水分生产效率分别提高4.5%和4.3%.相关分析表明,在干旱缺水的宁南地区,冬小麦播种期、拔节-抽穗-灌浆期的土壤蓄水量可显著影响产量,尤其抽穗期的土壤蓄水量对产量的影响更大.  相似文献   

9.
在2009-2010和2010-2011年小麦生长季,设置10、20、40、60、80和100 m 6个畦田长度,研究不同畦长对小麦耗水特性及产量的影响.结果表明: ≤80 m畦长处理下,随畦长的增加,灌水量逐渐增加,灌水量占总耗水量的比例增加,土壤贮水消耗量减少,小麦拔节至开花期的耗水量和生长季总耗水量均减少,开花期0~200 cm各土层土壤含水量增加,土壤供水能力提高,籽粒产量和水分利用效率逐渐提高.与80 m畦长处理相比,<80 m畦长处理的灌水量少,上层土壤含水量低,促使小麦吸收更多的深层贮水,总耗水量增加,不利于节水;而100 m畦长处理的灌水量、土壤贮水消耗量和总耗水量均增加,由于一次性灌水量过多且灌溉水分布不均匀,导致小麦千粒重降低,籽粒产量和水分利用效率显著下降,也不利于节水高产.  相似文献   

10.
在田间试验条件下, 以中穗型小麦(Triticum aestivum)品种‘山农15’和大穗型品种‘山农8355’为供试材料, 设置3个0-140 cm土层土壤相对含水量处理: W0 (拔节期65%, 开花期60%)、W1 (拔节期70%, 开花期70%)、W2 (拔节后8天70%, 开花后8天70%), 采用测墒补灌的方法补充土壤水分达到目标相对含水量, 对两个不同穗型小麦品种的耗水特性和干物质积累与分配进行了研究。结果表明: (1)两品种籽粒产量均以W0处理最低, ‘山农15’ W1和W2处理无显著差异, ‘山农8355’ W1处理显著高于W2处理; 两品种W1处理的水分利用效率和灌溉水利用效率均显著高于W2处理。‘山农15’ W1处理的籽粒产量和灌溉水利用效率分别显著低于和高于‘山农8355’的W1处理, 水分利用效率无显著差异; 两品种W2处理的籽粒产量、水分利用效率和灌溉水利用效率均无显著差异。(2)两品种总耗水量以W0处理最低, ‘山农15’ W1处理显著低于W2处理, ‘山农8355’两处理无显著差异; 两品种W1处理的土壤供水量及其占总耗水量的比例显著高于W2处理。‘山农15’ W1处理的总耗水量和灌水量占总耗水量的比例显著低于‘山农8355’, 土壤供水量占总耗水量的比例显著高于‘山农8355’; 两品种W2处理总耗水量, 土壤供水量及其占总耗水量的比例无显著差异。(3)两品种W1处理成熟期干物质积累量显著高于其他处理, W1处理提高了‘山农8355’开花后干物质积累量及其对籽粒的贡献率, 对‘山农15’无显著影响。‘山农15’ W1和W2处理成熟期干物质积累量显著低于‘山农8355’, 开花前贮藏同化物向籽粒的转运量和转运率、对籽粒的贡献率均显著高于‘山农8355’, 开花后干物质积累量及其对籽粒的贡献率低于‘山农8355’。综合考虑干物质积累与分配、籽粒产量、水分利用效率和灌溉水利用效率, W1处理是两品种节水高产的最佳土壤相对含水量处理。  相似文献   

11.
不同小麦品种耗水特性和籽粒产量的差异   总被引:9,自引:0,他引:9  
Yan XM  Yu ZW  Zhang YL  Wang D 《应用生态学报》2011,22(3):694-700
在田间试验条件下,采用10个小麦品种,设全生育期不灌水(W0)、灌底墒水+拔节水(W1)、灌底墒水+拔节水+开花水(W2)3个处理,每次灌水量60 mm,研究不同小麦品种不同生育阶段的耗水特点和籽粒产量的差异.结果表明:以W0、W1和W2处理的小麦籽粒产量和水分利用效率(WUE)2因子为指标进行聚类分析,可将10个品种分为3组:高产高水分利用效率组(组Ⅰ)、高产中水分利用效率组(组Ⅱ)和中产低水分利用效率组(组Ⅲ).在W0处理下,组Ⅰ小麦品种的总耗水量、开花至成熟期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,籽粒产量最高;在W1处理下,组Ⅰ小麦品种拔节至开花期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,开花至成熟期的耗水量和耗水模系数在组Ⅰ、组Ⅱ和组Ⅲ间无显著差异;在W2处理下,组Ⅰ小麦品种的土壤供水量、拔节至开花期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,开花至成熟期的耗水量和耗水模系数为组Ⅰ和组Ⅲ低于组Ⅱ.表明组Ⅰ高产高水分利用效率品种为最适宜品种,而底墒水和拔节水各灌60 mm的W1处理是兼顾高产与节水的最佳处理.  相似文献   

12.
高产条件下不同小麦品种耗水特性和水分利用效率的差异   总被引:2,自引:0,他引:2  
王德梅  于振文  许振柱 《生态学报》2009,29(12):6552-6560
设置不灌水(W0)、底墒水+拔节水(W1)、底墒水+拔节水+开花水(W2)3个灌水处理,采用6个冬小麦(Triticum aestivum.L.)品种,研究了不同品种耗水特性和水分利用效率的差异.结果表明:(1)依据籽粒产量和水分利用效率2个因子,采用聚类分析的方法,将供试品种分为高水分利用效率组(Ⅰ组)、中水分利用效率组(Ⅱ组)和低水分利用效率组(Ⅲ组).同一灌水条件下的籽粒产量,Ⅰ组显著高于Ⅱ组和Ⅲ组;Ⅱ组和Ⅲ组在W0条件下无显著差异,在W1和W2条件下Ⅱ组显著高于Ⅲ组.(2)从Ⅰ组、Ⅱ组、Ⅲ组中分别取1个品种,泰山23、潍麦8号、山农12进一步分析表明,在W0 和W1条件下,泰山23和潍麦8号的阶段耗水量和耗水模系数为开花至成熟>播种至拔节>拔节至开花,山农12为播种至拔节>开花至成熟>拔节至开花.W2条件下,3个品种的阶段耗水量和耗水模系数为开花至成熟>播种至拔节>拔节至开花;播种至拔节和拔节至开花的耗水模系数为泰山23>山农12>潍麦8号,此阶段的耗水量和耗水强度为泰山23品种最高;开花至成熟的耗水模系数为潍麦8号>山农12 >泰山23,此阶段的耗水量和耗水强度为泰山23品种最低.(3) 在W0 和W1条件下,总耗水量和灌水量、降水量及土壤耗水量占总耗水量的百分率为泰山23品种居中;W2条件下,灌水量和降水量占总耗水量的百分率为泰山23>潍麦8号>山农12,土壤耗水量及其占总耗水量的百分率反之,但泰山23的总耗水量最低.(4) 同一灌水条件下,泰山23品种100~200cm土层的土壤耗水量高于潍麦8号,表明该品种能充分利用深层土壤水;山农12品种在W0和W2条件下,100~200 cm土层的土壤耗水量高于泰山23和潍麦8号,但其籽粒产量和水分利用效率显著低于上述两品种.  相似文献   

13.
为探明灌溉对干旱区冬小麦(Triticum aestivum)产量、水分利用效率(WUE)、干物质积累及分配等的影响, 以甘肃河西走廊冬小麦适宜种植品种‘临抗2号’为材料进行了研究。在冬季灌水180 mm的条件下, 生育期以灌水量和灌水次数等共设置5个处理, 分别为: 拔节期灌水量165 mm (W1)、拔节期灌水量120 mm +抽穗期灌水量105 mm (W2)、拔节期灌水量105 mm +抽穗期灌水量105 mm +灌浆期灌水量105 mm (W3)、拔节期灌水量75 mm +抽穗期灌水量75 mm +灌浆期灌水量75 mm (W4)、拔节期灌水量105 mm +抽穗期灌水量75 mm +灌浆期灌水量45 mm (W5)。结果表明: 随着生育期的推进, 土壤有效含水量(AWC)受灌水次数及灌水量影响更加明显; W3、W4处理的土壤各层AWC在灌浆期均较高; 叶面积指数(LAI)下降慢, 延缓了生育后期的衰老; 生育后期干物质积累增加, 提高了穗粒数、千粒重和籽粒产量。籽粒产量以W3处理最高, 但W4具有最高的WUE, 且籽粒产量与W3无显著差异, 但W4较灌溉总量相同的W2和W5以及灌水量最少的W1具有明显的指标优势。W1、W2、W5处理灌浆期各层土壤AWC均较低, 花后LAI下降快, 干物质积累减少, 灌浆持续期缩短, 穗粒数和千粒重减少, 最终表现为籽粒产量和WUE下降。灌浆期水分胁迫可促进花前储存碳库向籽粒的再转运, 并随着干旱胁迫的加重而提高, 对籽粒产量起补偿作用; 水分胁迫提高了灌浆速率, 但缩短了灌浆持续期。相关性分析表明, 灌浆持续期、有效灌浆持续期、有效灌浆期粒重增加值和最大籽粒灌浆速率出现时间与千粒重和籽粒产量均呈正相关。综合考虑, 拔节、抽穗及灌浆期各灌溉75 mm是高产高WUE的最佳灌水方案。  相似文献   

14.
Men HW  Zhang Q  Dai XL  Cao Q  Wang CY  Zhou XH  He MR 《应用生态学报》2011,22(10):2517-2523
Taking the widely planted winter wheat cultivar Tainong 18 as test material, a field experiment was conducted to study the effects of different irrigation modes on the winter wheat grain yield and water- and nitrogen use efficiency in drier year (2009-2010) in Tai' an City of Shandong Province, China. Five treatments were installed, i. e., irrigation before sowing (CK), irrigation before sowing and at jointing stage (W1), irrigation before sowing and at jointing stages and at over-wintering stage with alternative irrigation at milking stage (W2), irrigation before sowing and at jointing and flowering stages (optimized traditional irrigation mode, W3), and irrigation before sowing and at over-wintering, jointing, and milking stages (traditional irrigation mode, W4). The irrigation amount was 600 m3 hm(-2) one time. Under the condition of 119.7 mm precipitation in the winter wheat growth season, no significant difference was observed in the grain yield between treatments W2 and W4, but the water use efficiency was significantly higher in W2 than in W4. Comparing with treatment W3, treatments W2 and W4 had obviously higher grain yield, but the water use efficiency had no significant difference. The partial factor productivity from N fertilization was the highest in W2 and W4, and the NO3(-)-N accumulation amount in 0-100 cm soil layer at harvest was significantly higher in W2 than in W3 and W4, suggesting that W2 could reduce NO3(-)-N leaching loss. Under the conditions of our experiment, irrigation before sowing and jointing stages and at over-wintering stage with alternative irrigation at milking stage was the optimal irrigation mode in considering both the grain yield and the water- and nitrogen use efficiency.  相似文献   

15.
不同土层测墒补灌对冬小麦耗水特性及产量的影响   总被引:2,自引:0,他引:2  
于2010-2011年选用高产小麦品种济麦22进行大田试验,设置0~20 cm(W1)、0~40 cm(W2)、0~60 cm(W3)和0~140 cm(W4)4个测墒补灌土层,于越冬期(目标相对含水量均为75%)、拔节期(目标相对含水量均为70%)和开花期(目标相对含水量均为70%)进行测墒补灌,以全生育期不灌水处理(W0)为对照,研究不同土层测墒补灌对冬小麦耗水特性及产量的影响.结果表明: 小麦越冬期、拔节期和开花期补充灌水量为W3>W2>W1,W4处理小麦越冬期和拔节期补充灌水量较少,但开花期补灌量显著高于其他处理;全生育期补灌量占总耗水量的比例为W4、W3>W2>W1.土壤水消耗量占总耗水量的比例为W1>W2>W3>W4;随测墒补灌土层深度的增加,土壤水消耗量占总耗水量的比例减少;W2处理80~140 cm和160~200 cm土层土壤水消耗量显著高于W3和W4处理.各处理的总补灌量为W3>W4>W2>W1;籽粒产量为W2、W3、W4>W1>W0,W2、W3、W4间无显著差异;水分利用效率为W2、W4>W0、W1>W3,W2与W4之间无显著差异.综合考虑灌水量、籽粒产量和水分利用效率,W2处理是本试验条件下的最佳处理,即以0~40 cm土层测墒补灌效果最优.  相似文献   

16.
水氮互作对小麦土壤水分利用和茎中果聚糖含量的影响   总被引:4,自引:2,他引:2  
通过田间试验,以强筋小麦济麦20为材料,设置3个施氮水平:0 kg·hm-2(N0)、180 kg·hm-2(N1)、240 kg·hm-2(N2);4个灌水处理:不灌水(W0)、底墒水+拔节水+开花水(W1)、底墒水+冬水+拔节水+开花水(W2)、底墒水+冬水+拔节水+开花水+灌浆水(W3),每次灌水量为60 mm,研究水氮互作对土壤水分含量、旗叶光合速率、倒二茎中果聚糖含量及氮肥和水分利用效率的影响.结果表明:施氮水平为180 kg·hm-2处理的旗叶光合速率和倒二茎中果聚糖含量较高,籽粒产量、氮肥表观利用效率、氮肥农学利用率和水分利用效率最高;施氮水平为240 kg·hm-2处理的茎中果聚糖含量较高;不施氮(N0)或施氮过多(N2)均不利于小麦籽粒产量、氮肥和水分利用效率的提高.W1水分处理促进了倒二茎中果聚糖的积累和向籽粒的转运,有利于产量的提高.180 kg·hm-2施氮水平配合灌溉底墒水+拔节水+开花水的水氮交互处理(N1W1)具有较高的籽粒产量及较高的氮肥和水分利用效率,在此基础上增加施氮量或灌水量,小麦旗叶光合速率和倒二茎中果聚糖含量升高,籽粒产量无显著变化或降低,氮肥和水分利用效率降低.  相似文献   

17.
灌溉和种植方式对冬小麦耗水特性及干物质生产的影响   总被引:3,自引:1,他引:2  
董浩  陈雨海  周勋波 《生态学杂志》2013,24(7):1871-1878
于2008-2010年通过田间试验,以高产中筋冬小麦品种济麦22为材料,设等行距平作、宽窄行平作、沟播3种种植方式,每种种植方式下设不灌水(W0)、拔节水(W1)、拔节水+开花水(W2)、拔节水+开花水+灌浆水(W3)4种灌溉处理(每次灌水量为60 mm),研究不同灌溉和种植方式对冬小麦耗水特性及干物质积累与分配规律的影响.结果表明: 随灌水量的增加,3种植方式下农田总耗水量均增加,灌水量占总耗水量的比例也增加,而土壤贮水消耗量及其占总耗水量的比例显著降低;与W0处理相比,各灌水处理提高了开花后干物质的积累量、小麦籽粒产量,而水分利用效率(WUE)降低.同一灌溉条件下,与其他两种种植方式相比,沟播方式土壤贮水量消耗比例、籽粒产量和WUE均较高.综合考虑小麦的籽粒产量和WUE,沟播结合灌拔节水+开花水是华北平原冬麦区较适宜的节水种植方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号