首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
自组装(Self-assembly)是80年代新兴的一种非常简单的成膜技术,该技术提供了在分子水平上方便地构造理想界面的手段,所得到的自组装单分子膜(Self-assembledmonolayers,SAMs)具有优于传统的LB膜的有序性与稳定性,在...  相似文献   

2.
自组装单分子膜(SAMs)是一类自发形成的、有序致密的、薄膜体系,当今已受到科学界的广泛关注.在金属或非金属的腐蚀防护与表面修饰等方面体现出无限的研究价值.在归纳这一领域的研究成果基础上,结合国内外腐蚀防护及应用方面的最新进展,简括了自组装单分子膜的机能及组装过程,重点论述和总结了SAMs在特殊物体表面的最新应用情况以...  相似文献   

3.
自组装单分子膜表征技术的研究   总被引:1,自引:0,他引:1  
对自组装单分子膜技术的研究是具有广泛的实用价值与应用价值的,随着自组装技术的深入发展其应用领域也更加广泛,同时其大量的表征方法也日益更新.本文主要从以下几方面对自组装膜的表征手段作出了对比分析,例如:光、电化学分析方法、光谱学测试方法、微观显微学测试法等及自组装分子膜的相关辅助手段,例如:粗糙度检测法、金像显微观测法、...  相似文献   

4.
自组装单层膜的研究   总被引:3,自引:0,他引:3  
自组装膜(self-assembled monolayers,SAMs)是通过有机分子反应活性头基与固体界面之间自发反应形成的稳定、有序、紧密堆积的超薄膜结构.近年来,通过界面自组装在固体表面形成超薄层有机材料的研究受到人们的广泛关注,在非线形化学、分子生物学、材料科学、分子器件、生物传感器等领域具有广泛的应用前景.对自组装单层膜的制备、特点、类型、机理和应用等方面进行了探讨.  相似文献   

5.
在单晶金片电极上制备了巯基十一酸[SH(CH2)10COOH]自组装单分子膜,利用1-乙基3-(3-二甲氨基)碳二亚胺盐酸盐(EDC)和N-羟基硫代琥珀酰亚胺(NHS),将抗体(纯化羊抗小鼠IgG)以共价键形式固定在金电极上,分别测定了裸金电极、自组装单分子膜电极、抗体膜电极的电位响应,最后根据抗原、抗体反应前后电极电位的变化,对游离抗原进行检测,电极检测下限可达0.5/μg/L,检测范围为0.5~12μg/L.  相似文献   

6.
新工艺方法在玻璃基体表层及银片表面制备出3-巯基丙基三甲氧基硅烷自组装单分子膜(MPS-SAM),并利用扫描电子显微镜(SEM)观察了玻璃基体薄膜形貌,使用自动椭圆偏振测厚仪SGC-2测出其膜厚;运用金相显微镜观测出银片表面形貌变化并结合触针式粗糙度测量仪得出其膜厚范围;同时通过塔菲尔曲线(Tafel)对银片电极的电化学性能进行了对比分析。结果表明:组装溶液的成膜形貌与致密性受组装时间的影响很大且在金属与非金属表面的成膜时间大不相同;银片表面组装膜形貌的变化决定其缓蚀性能、稳定性和致密性等条件。  相似文献   

7.
自组装膜的研究应用新进展   总被引:6,自引:0,他引:6  
对最近几年界面科学、分子工程学等化学领域中研究最多的自组装膜体系进行了总结。并分别对其结构、性能、应用等方面的新进展作了较全面的概述。对深入研究自组装膜体系具有一定的借鉴意义。  相似文献   

8.
自组装技术(SA)提供了在分子水平上构造化学界面的简便手段,在生物传感器、润滑、金属防腐、催化、刻蚀、分子器件、非线形光学等诸多领域具有广泛的应用前景,已成为近20年来界面化学与材料化学领域研究的热点.自组装单分子膜(SAMs)的表征是SA研究的重要内容,电化学交流阻抗技术(EIS)是表征SAMs的有效手段.但是,关于在水溶液中制备羧基硫醇SAMs以及EIS测试条件的系统研究鲜有报道.以KCl为支持电解质,以[Fe(CN)6]3-/4为探针离子,在优化实验条件下,对磷酸盐缓冲溶液(PBS,pH 7.0)中制备的巯基丙酸SAMs修饰金电极(MPA SAMs/Au)进行了EIS表征,探讨了溶剂以及浸泡时间对MPA SAMs的影响,研究结果对SAMs的制备与应用具有一定参考价值.  相似文献   

9.
分子自组装及超分子自组装体的研究进展   总被引:1,自引:0,他引:1  
基于分子自组装的超分子科学是21世纪的新概念和高新技术的重要源头之一.简要介绍了超分子体系,阐述了分子自组装的基本概念和特点,系统地总结并评述了超分子自组装体的最新进展和成果,并展望了超分子自组装研究的发展前景.  相似文献   

10.
自组装单分子膜的研究是近年来倍受关注的研究领域。随着膜的应用领域的拓展,对膜的组装技术和表征方法不断提出新的要求。综述了现阶段分子自组装膜的主要制备方法和基底表面的处理方法;着重从电化学、谱学、显微学等方面综述了近几年来自组装单分子膜的表征方法研究进展,并对其发展前景作了展望。  相似文献   

11.
在半胱氨酸自组膜上固定抗体(羊抗小鼠IgG)制备免疫传感器,分别与巯基十一酸自组膜和32-巯基-3,6,9,12,15,18,21-七氧杂三十二烷酸(EG6COOH)自组膜免疫传感器比较其性能。结果发现通过半胱氨酸自组膜制备的免疫传感器具有最好的灵敏度。能够在13min内。0.05~5.4μg/L范围对游离IgG灵敏检测,检测下限为0.05μg/L。  相似文献   

12.
采用分子自组装成膜技术,在磁头表面制备了1H,1H,2H,2H-全氟癸烷基三乙氧基硅烷(FTE)自组装膜。使用时间飞行二次离子质谱仪(TOF-S IM S)、X射线光电子能谱仪(XPS)、原子力显微镜(AFM)和接触角测量仪对FTE自组装膜进行了表征。XPS测得的FTE自组装膜C 1s谱图中有分谱出现在287.905 eV位置,这证明FTE分子以C—O—S i键与磁头表面结合。通过分析TOF-S IM S测量的不同反应时间的膜厚和其对应的AFM表面形貌图发现,FTE自组装膜形成过程分为表面亚单层膜低覆盖、表面亚单层膜中等覆盖、团聚和聚结4个阶段。实验结果表明,控制反应时间可以在磁头表面制备超薄平整的FTE自组装膜,膜厚为(1.20±0.01)nm,表面粗糙度小于0.2 nm。该层超薄膜使磁头对水的接触角增加到110.5°±0.1,°令磁头的疏水性能得到很大提高,进而较大幅度地提高了磁头表面的抗污染能力。  相似文献   

13.
一类巯基衍生卟啉的合成及其电化学性质研究   总被引:1,自引:0,他引:1  
以香草醛、苯甲醛和吡咯为起始原料合成了3种新型尾式巯基卟啉和相应的钴卟啉,用IR、UV-Vis和1HNMR进行了表征.将巯基衍生卟啉自组装在金电极表面,用电化学方法研究了自由碱卟啉和金属卟啉自组膜性质的差异.  相似文献   

14.
15.
Atomic stick-slip friction between commensurate self-assembled monolayers   总被引:1,自引:0,他引:1  
The classical molecular dynamics simulations have been used to examine the compression and friction between commensurate self-assembled monolayers (SAMs) on Au (111). The friction force changes in a period corresponding to the geometric structure of sliding surfaces. The simulations reveal an ordered atomic stick-slip motion and discontinuous movements of diverse monomers, mainly head and tail groups. All of the head groups of the static film have 2~3 metastable positions (MPs). They oscillate around one of the MPs in stick phases and jump simultaneously to a new MP in slip phases. The tail groups of the sliding film are pulled forward together with opposite ones while sticking and jump forward half of the lattice constant relative to opposite ones while slipping. A complete vision of the motion of SAM chains is thereby built up and compared with the molecule behavior predicted by the Tomlinson model.  相似文献   

16.
采用方波伏安法,在包含1 mmol/L[Fe(CN)6]3-/[Fe(CN)6]4-的0.15 mol/L的NaCl溶液中,对Au/CaM膜的电化学行为进行了初步表征。由方波伏安电流响应图可知:CaM可以在Au基底自组装成膜,[Fe(CN)6]3-/[Fe(CN)6]4-在Au/CaM膜电极上发生的是电化学不可逆反应过程。  相似文献   

17.
0 IntroductionTrifluoperazine is a derivative of phenothiazine. It hasneuroleptic and antidepressive actions, hence has beenwidely used in the treatment of psychotic patients[1]. As it hassuch function and application, trifluoperazine’s characteristicsand detection methods were studied by means of spectropho tometry[2], capillary zone electrophoresis[3], titrimetry[4],fluorometry[5], high performance liquid chromatographyetc[6]. Because of the electroactivity of trifluoperaz…  相似文献   

18.
The excellent electro-mechanical properties and chemical stability of CNTs promise a prospective ap- plications in nanotechnology. For electronic applica- tions, CNTs have been proved successful in practice in producing components such as a junction and f…  相似文献   

19.
Conclusion This work shows that the structures of Cn AzoC2 (n = 1, 2, 3, 4) SAMs are significantly different and influence the observed electrochemical behavior of these novel azobenzene systems. The sluggish electron-transfer kinetics of azobenzene SAMs were explained by the alkyl spacer between azobenzene and electrode, the spatial inhibition for structural change in the redox process of azobenzene, as well as the ion-transportation barriers. For decrease of the apparent electrontransfer rate constants with increasing the length of end-groups, and the electrochemical inaccessibility of C4AzoC2 SAMs, the spatial inhibition for structure conformational change and ion-transportation was considered as the predominant factor.  相似文献   

20.
Recently, much attention has been paid to the self-assembled monolayers (SAMs) or Langmuir-Blodgett films (LB films) of molecules bearing azobenzene group on the surface. Azobenzene derivatives are attractive ow-ing to their interesting photoresoponsive behavior[1—5]. Azobenzene and its derivatives take both trans (E) and cis (Z) structures with respect to the azo linkage and normally exist in the more stable trans form[6]. Being irradiated with appropriate light, organic molecules and po…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号