首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
表面介质阻挡放电(DBD)在气体流动控制方面有着巨大的应用前景。利用自制的纳秒和微秒脉冲电源进行表面DBD实验,比较了电压幅值、介质厚度、电极水平间距等对两种激励下表面DBD电特性的影响并进行了分析。实验中两种电源激励的表面介质阻挡放电能量均在mJ量级,上升沿瞬时最大功率达到几十kW。实验结果表明:在脉冲上升沿有多次放电,微秒脉冲上升沿放电次数比纳秒脉冲多;随着电压幅值上升,放电次数减少;介质越薄,放电越激烈,能量越大;电极水平间距对表面DBD放电有影响,间距0 mm时能量消耗最大;施加脉冲电压频率越大,放电等离子体的亮度越大;微秒脉冲放电的等离子体区域要大于纳秒脉冲放电。  相似文献   

2.
大气压空气中纳秒脉冲介质阻挡放电均匀性的研究   总被引:3,自引:0,他引:3  
为了实现大气压空气中纳秒脉冲均匀介质阻挡放电(DBD),利用上升沿15ns,半高宽30~40ns的正极性纳秒脉冲激发DBD,并由电压电流和放电图像研究DBD的特性,分析均匀放电实现的条件和特征。实验结果表明放电电流呈双极性,且电气参数要比交流及微秒脉冲DBD的高,在一定条件下可获得均匀模式放电。通过重复频率和气隙距离对放电均匀性的影响研究发现,2mm空气间隙中,双层介质阻挡时重复频率对放电均匀性影响不明显,但当间隙距离从2~8mm延长时,放电明显由均匀模式向丝状模式过渡。此外,对纳秒脉冲DBD放电均匀性与施加脉冲上升沿的关系进行了探讨。  相似文献   

3.
脉冲激励能大幅度提升介质阻挡放电(dielectric barrier discharge,DBD)负载的放电效率。针对传统的实验研究由于受到实验环境和材料等的限制,无法对脉冲激励下介质阻挡放电的放电特性进行更细致的研究的现状。文中以电压型脉冲激励下填充气体为氩气(Ar)的DBD型负载为研究对象,通过构建DBD负载的一维流体模型对该模型的放电曲线以及在不同脉冲参数和介质层参数的条件下DBD的放电特性进行研究。结果表明:DBD负载在一个周期内产生两次极性相反的放电,第一次放电强度比第二次放电强度要高。此外,通过对放电过程的电气量的时空特征研究得出,可以通过提高脉冲电压的幅值、缩短脉冲升降沿时间、选择相对介电常数高的材料以及减少介质层厚度的方法来提高DBD负载的性能。  相似文献   

4.
作为高压高重复频率脉冲电压发生器的开关器件,磁开关的耐压、通流能力以及寿命远高于半导体开关,因而适用作为介质阻挡放电(DBD)激励电源的开关。为研究双极性高频下DBD等离子体放电特性,提出高频双极性磁脉冲压缩系统。首先,阐释通过全桥逆变电路、脉冲变压器和磁开关产生双极性脉冲的原理,并叙述该系统关键器件的设计;其次,利用PSpice仿真软件研究电路关键参数对输出波形的影响规律,测试电阻性负载电压波形,并与仿真结果进行对比分析。测试结果表明,通过双极性磁脉冲压缩系统,能够在负载两端输出的纳秒脉冲电压具有以下参数:幅值在5~13k V可调,上升沿100ns左右,重复频率可高至几千Hz。最后,针对高频双极性下的放电现象进行研究,结合DBD放电模型和放电图片探索高频双极性脉冲电压下放电特性与频率的关系,充实了高频放电理论研究。  相似文献   

5.
介质阻挡放电(DBD)是产生低温等离子体的重要方法。实验研究的DBD由上升沿15 ns,半高宽约30ns最高重复频率1 kHz的正极性纳秒脉冲产生,测量了DBD电压、电流以及放电图像。结果表明,空气间隙上发生两次放电,分别发生在施加电压的上升沿和下降沿末端,电流峰值可达百安培量级,峰值功率可以达到MW级。放电图像显示放电分为均匀放电和丝状放电两种模式,且阻挡方式和重复频率都是影响这两种放电模式相互转化的重要因素。  相似文献   

6.
《高压电器》2017,(4):53-59
为了深入探究纳秒脉冲电源作用下沿面介质阻挡放电等离子体特性参数的演化规律,揭示其作用机理,文中搭建了纳秒脉冲电源作用下非对称结构沿面介质阻挡放电等离子体光电特性实验测量平台,并在此基础上建立了放电集总参数等效电路模型,通过对比实验推理和仿真计算分别得到的放电电流以及电子密度参量,证明了模型的有效性。文中通过该模型计算得到了介质表面电压、气隙电压以及电子温度等等离子体特性参数随时间的变化关系,并进一步研究了电源斜率对大气压沿面介质阻挡放电电流的影响。得到的主要结论为:单极性纳秒脉冲电源作用下,在脉冲上升沿存在二次放电,在下降沿存在反向放电过程,电子温度与电子密度高达8.3 e V和2.7×10~(18)m~(-3),电源斜率对放电有重要的影响,随着电压上升率增加,第1次放电的电流增大。放电时刻提前,但是对应的第2次放电电流略有减小,下降率的增加则对应着第2次放电电流幅值的增加,第1次放电的电流则略有减小,研究结果为深入分析激励器放电特性,提高等离子体发生器效率提供参考。  相似文献   

7.
大气压空气中纳秒脉冲介质阻挡放电特性分析   总被引:7,自引:1,他引:6  
介质阻挡放电(dielectric barrier discharge,DBD)是产生低温等离子体的重要方法,纳秒脉冲条件下DBD与普通交流下的放电不同。通过单极性纳秒脉冲激发大气压空气中DBD,计算纳秒脉冲DBD的电气参数,与交流或微秒脉冲放电的电气参数相比较,并对比放电图像与电流波形的关系,探讨了放电机制。研究结果表明,纳秒脉冲DBD的放电电流呈双极性,气隙上发生2次放电过程,其电气参数高于常规交流和微秒脉冲DBD的电气参数。随着空气间隙距离的增加,均匀放电向丝状放电的转化与电流脉冲波动相关。由于微放电持续时间与施加脉冲处于同一个数量级,且基本同时发生在气隙中,很难在同一位置上存在数个连续的微放电,这对放电的均匀性有利。  相似文献   

8.
为了分析在小间隙下介质阻挡放电丝的生成机理,以体放电和沿面放电为研究对象,探讨了其在流光放电机制下的形成过程。采用针–板介质阻挡放电装置,在大气压氩气中形成了稳定的放电。利用电学和光学方法,研究发现,随外加电压的增加放电由单丝发展为多丝,在此过程中,发光脉冲的强度增加,且半周期的发光脉冲个数也增加。对于正半周期放电的起始电压,发现其随氩气体积流量的增加而增加,随外加电压峰值的增加而减小。在纳秒曝光时间尺度下,利用高速相机对单丝放电在一个外加电压周期的时间演化过程进行了研究。发现该介质阻挡放电由气隙中的体放电和电介质板上的沿面放电两部分组成。不论电压正半周期还是电压负半周期,体放电均源于正流光机制,而沿面放电的机制与电极的极性有关。瞬时阴极上的沿面放电对应正流光传播过程,而瞬时阳极对应负流光机制。  相似文献   

9.
为了在提高放电等离子体活性的同时保持较为稳定的放电,文中利用纳秒脉冲电源驱动大气压氩气中针—水结构气液放电,研究了不同脉冲电压和频率下的放电电学特性、发光图像和发射光谱强度,并讨论了相关参数对放电特性的影响原因。结果表明:在氩气纳秒脉冲气液放电中,脉冲电压和频率不会对放电模式产生影响。随着脉冲电压的增大,上升沿电流、下降沿电流和平均功率均增大,且上升沿电流总是大于下降沿电流;当脉冲频率增大时,上升沿电流和平均功率增大,下降沿电流逐渐减小。等离子体特性方面,在不同脉冲电压和频率下均测到了较强的Ar(4p→4s)、H(656 nm)和O(777 nm)谱线和较弱的H(486 nm)谱线,并且4种激发态活性粒子的发射光谱强度均随着脉冲电压和频率的增大而增大。  相似文献   

10.
单极性纳秒脉冲介质阻挡放电电荷传输特性实验分析   总被引:1,自引:0,他引:1  
于洋  邵涛  章程  张东东  王珏  严萍 《高电压技术》2011,37(6):1555-1562
单极性高压脉冲电源激发介质阻挡放电(DBD)产生非平衡态等离子体具有很好的前景。为此,基于单极性ns脉冲电源实验研究了DBD电荷传输特性。通过改变实验条件,同时也研究了不同情况下放电的电荷传输以及能量消耗。研究了介质阻挡层厚度、介质阻挡层材料、气隙距离、施加脉冲电压幅值、重复频率和电压极性对放电电荷传输特性的影响。实验...  相似文献   

11.
大气压介质阻挡放电(DBD)等离子体被广泛研究用于生物灭菌、材料表面改性、污染物净化处理等,而DBD装置的电极结构影响等离子体生成特性及其应用效果。为此,研究了不同高压电极构型(阵列针电极、网电极、平板电极)对DBD装置的放电特性、臭氧生成特性的影响。结果表明:网孔尺寸影响网电极的电流脉冲幅值、丝状电流脉冲数目和放电功率,网孔尺寸为0.2 mm×0.2 mm的网电极放电时的丝状电流脉冲数目大、电流脉冲幅值高,而网孔尺寸为0.5 mm×0.5 mm的网电极放电时的放电功率大;平板电极放电时的电流脉冲幅值高于网电极(网孔尺寸为0.5 mm×0.5 mm)和阵列针电极放电时的电流脉冲幅值,而平板电极的放电功率与网电极的放电功率相差不大,但远大于阵列针电极的放电功率;不同网孔尺寸的网电极放电时,在相同电压下,网孔尺寸为0.5 mm×0.5 mm的网电极放电时生成的臭氧质量浓度最高,且其生成的臭氧质量浓度和生成臭氧的能量效率均高于平板电极和阵列针电极。  相似文献   

12.
等离子体显示平板(PDP)作为自发光显示器件存在光效低、功耗大的问题。本文提出了一种新思路,利用快脉冲驱动改善PDP单元介质阻挡放电发光强度,提高电光转化效率。驱动源主要由低压信号经隔离放大后控制快速开关管开通、关断,实现正负几百伏双极纳秒脉冲输出。PDP工作在维持驱动期稳定放电状态下,测量了照度、相对红外辐射等特性参数。给出了上升沿和脉宽引起特性参数变化的曲线,以及硬开关阶段上升沿参数的选取的实验结果分析。研究表明,快上升沿脉冲有利于PDP单元放电过程紫外光充分激发并大大降低热效应,从而显著改善PDP的光效。  相似文献   

13.
利用多针-平板电极在大气压空气中产生介质阻挡放电(DBD)等离子体,通过实验研究比较了μs脉冲和高频电源激励下的放电特性。测量了放电的电压电流波形图等电气特性,同时获得了放电发光图像及光谱特性等光学特性。计算得到放电功率、传输电荷、振动温度和电子密度等主要放电参量,研究了不同电压幅值下这些放电参量的变化规律,并结合放电机理对实验结果进行分析。结果表明:μs脉冲DBD比高频DBD更强烈,脉冲电压幅值的上升速率快,迅速在放电空间产生很高的过电压,加上脉冲放电过程中两次放电的相互影响,有效降低了放电空间的场强,因而脉冲DBD具有更好的放电均匀性和更高的放电效率。  相似文献   

14.
高级氧化技术的联用可以提高水体中有机物的矿化效率,为此,基于脉冲放电过程中产生的紫外光效应,研究将玻璃珠负载的TiO2膜催化剂放置于一多针-板电极形式的脉冲放电等离子体体系中,建立脉冲放电等离子体-流光光催化协同体系,分析其协同作用机理。研究考察了不同载气、溶液初始pH值和添加不同浓度自由基捕收剂(碳酸钠)等实验条件下,单独脉冲放电等离子体体系和脉冲放电等离子体-流光光催化协同体系中苯酚氧化的准一级动力学常数。结果表明,在各实验条件下,脉冲放电流光均能诱导TiO2的光催化活性;氧气(O2)作为载气和酸性溶液条件有利于提高协同体系中苯酚的降解速率;在单独脉冲放电体系和脉冲放电等离子体-流光光催化协同体系中,对有机物降解起主要作用的是羟基自由基(.OH)。  相似文献   

15.
《高压电器》2017,(4):5-12
利用等离子体技术可以裂解甲烷,产生C2烃和氢气等具有更高价值的物质。对等离子体放电参数优化以提高甲烷等离子体转化效率具有重要意义。文中基于同轴DBD反应装置,在自主研制的微秒和纳秒脉冲电源的激励下,改变电源参数和气体流速,研究了甲烷裂解过程中不同参数下初始击穿电压的变化规律、放电图像、Lissajous图形以及单脉冲内的能量和功率,为甲烷转化提供参考。实验结果表明,两台电源作用下气体初始击穿电压均随脉冲重复频率的增加而下降,但纳秒源作用时该趋势更明显;放电强度均随脉冲重复频率增加而加强,相同参数下,微秒源作用时放电更强;施加电压一定时,不同脉冲重复频率以及不同气体流速下Lissajous图形形状几乎一致,微秒源作用时的图形更接近典型的平行四边形;气体流速和脉冲重复频率相同时,两台电源单脉冲内放电能量与所加电压几乎成直线关系变化,气体流速和施加电压相同时,单脉冲内放电能量几乎不受脉冲重复频率的影响,但是纳秒源可以得到更高的瞬时功率。实验表明,脉冲电源可以作用于DBD反应器用于转化甲烷,纳秒源作用时系统的效率比微秒源更高。  相似文献   

16.
相对于体介质阻挡放电(VDBD),沿面介质阻挡放电(SDBD)等离子体可以更高效地生成反应活性物质,在气体处理方面显示了较高的效率。但沿面放电仅沿介质表面发展,限制了放电等离子体装置处理气体的能力。文中设计了一种新型的沿面/体复合DBD装置,通过在垂直于沿面放电高压电极的上部增加体放电电极,用于扩展等离子体的空间分布并提高活性物质的产量,研究了电极构型、放电气隙、放电电压及气体体积流量等对装置的放电特性及臭氧生成的影响。在空气间隙为4.5mm,外加电压幅值为16kV时,SDBD放电功率为11.2W,VDBD放电功率为4.6 W,复合装置的放电功率为19.7 W;分别测量复合装置中的沿面放电和体放电功率发现,复合装置的沿面放电功较单一沿面放电装置的放电功率提高了1.1倍,而复合装置的体放电功率较单一体放电功率提高了1.9倍。臭氧测试结果表明,复合装置生成的臭氧质量浓度可达3.0 mg/L,分别是SDBD和VDBD的3.8倍和5.0倍。  相似文献   

17.
比较了不同的放电方式,即单纯脉冲火花放电、脉冲流光放电(针-板式、线-筒式)、介质阻挡放电(正脉冲、交流)对NO和CH4的活化转化能力。其中脉冲火花放电和针-板式脉冲流光放电对CH4的活化能力较强,CH4的最大转化率分别为100%和36%,但是在N2+O2体系中NOx的合成加剧。如在针-板式脉冲流光放电中,在O2体积分数为9.8%时,NO的体积分数为449μL/L。线-筒式脉冲流光放电中,即使在输入功率为14.4W时,CH4的最大转化率小于3%,而NO的最大转化率为25%。正脉冲介质阻挡放电中,在21.6kV、输入功率6.4W时,NO和CH4的转化率分别为31%和4.4%,在交流介质阻挡放电中,在低温下有利于NO的转化,在100℃、输入功率为6W时,NO转化率为34.5%,但是对CH4的活化能力较弱。  相似文献   

18.
张龙龙  崔行磊  刘峰  方志 《电工技术学报》2021,36(15):3135-3146
绝缘材料表面湿闪、污闪会对电力系统安全带来隐患.利用低温等离子进行疏水改性,可降低水滴在绝缘材料表面的浸润程度,抑制其吸附污渍、粉尘,进而提高耐湿闪、污闪等沿面耐压能力.为此,可在放电气体中添加疏水反应媒质,在材料表面引入相应疏水性基团,提高其疏水性.该文在Ar大气压介质阻挡放电(DBD)中添加六甲基二硅醚(Hexamethyldisiloxane,HMDSO)作为疏水反应媒质,研究高频、微秒脉冲和纳秒脉冲电源激励下HMDSO添加比例对DBD光学和电气特性影响规律.结果表明,不同电源激励下DBD均呈现丝状放电模式,尤其纳秒脉冲DBD放电区域中出现明亮的放电细丝,添加HMDSO后,DBD均匀性得到改善.高频和微秒脉冲激励下,HMDSO的添加会导致放电电流减小,发射光谱强度降低,放电减弱,而纳秒脉冲激励下放电电流和发射光谱强度先增加后减小,在添加比例为1.5%时,放电电流和发射光谱最大,放电最强.采用等效电路模型计算相应的能量效率,高频DBD能量效率最低,约为20%;纳秒脉冲DBD能量效率最高,约为70%,HMDSO添加对DBD能量效率影响不明显.三种类型电源相比,纳秒脉冲电源激励下放电强度和能量效率最大,在合适的HMDSO添加比例下产生活性粒子的能力更强,可为疏水改性提供更加有利的条件.  相似文献   

19.
常压空气中大间隙介质阻挡放电特性   总被引:1,自引:0,他引:1  
常压空气中大间隙介质阻挡放电是一种低成本的等离子体产生方法。为此,研究了采用针-板介质阻挡放电(DBD)装置和光电倍增管对常压空气中大间隙介质阻挡放电的特性。结果表明,随着外加电压的变化,存在电晕放电和等离子体羽放电2种放电模式。电晕放电发生在针尖处很小的区域,而等离子体羽放电发生在针-板电极间的较大区域,且等离子体羽长度随外加电压呈阶段性变化。对等离子体羽不同位置的发光信号进行了空间分辨测量,发现针尖附近为连续放电,而远离针尖处为等离子体子弹放电。每次放电等离子体长度随电压峰值的增长关系与每个脉冲的起始电压随外加电压峰值的变化关系一致。  相似文献   

20.
为了研究补偿电感量、介质层厚度和气隙大小等参数对介质阻挡放电(dielectric barrier discharge,DBD)特性的影响,采用Buck直流电源与逆变方波电源串联结构作为主电路,设计了一种DBD高频高压放电电源,该电源的输出电压和逆变开关工作频率单独可调。以单层和双层聚四氟乙烯平行板电极结构作为等离子体发生器进行了DBD高频高压放电实验,重点分析了补偿电感量、介质层厚度和气隙大小等参数对DBD放电负载回路谐振频率和DBD放电效果的影响。实验结果表明:改变补偿电感量,可以调节DBD放电负载回路的谐振频率;增大介质层厚度和气隙,介质电容和气隙电容减小,负载回路的谐振频率增大,放电效果减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号