首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Transmitter diversity in the downlink of code-division multiple-access (CDMA) systems achieves similar performance gains to the mobile-station receiver diversity without the complexity of a mobile-station receiver antenna array. Pre-RAKE precoding at the transmitter can be employed to achieve the multipath diversity without the need of the RAKE receiver at the mobile station. We examine feasibility of several transmitter diversity techniques and precoding for the third-generation wideband CDMA (WCDMA) systems. In particular, selective transmit diversity, transmit adaptive array and space-time pre-RAKE (STPR) techniques are compared. It is demonstrated that the STPR method is the optimal method to combine antenna diversity and temporal precoding. This method achieves the gain of maximum ratio combining of all space and frequency diversity branches when perfect channel state information is available at the transmitter. We employ the long range fading prediction algorithm to enable transmitter diversity techniques for rapidly time varying multipath fading channels.  相似文献   

2.
We present a transmit diversity technique for the downlink of (wideband) direct-sequence (DS) code division multiple access (CDMA) systems. The technique, called space-time spreading (STS), improves the downlink performance by using a small number of antenna elements at the base and one or more antennas at the handset, in conjunction with a novel spreading scheme that is inspired by space-time codes. It spreads each signal in a balanced way over the transmitter antenna elements to provide maximal path diversity at the receiver. In doing so, no extra spreading codes, transmit power or channel information are required at the transmitter and only minimal extra hardware complexity at both sides of the link. Both our analysis and simulation results show significant performance gains over conventional single-antenna systems and other open-loop transmit diversity techniques. Our approach is a practical way to increase the bit rate and/or improve the quality and range in the downlink of either mobile or fixed CDMA systems. A STS-based proposal for the case of two transmitter and single-receiver antennas has been accepted and will be included as an optional diversity mode in release A of the IS-2000 wideband CDMA standard  相似文献   

3.
Future wireless systems will need to accommodate information sources with different data rates. Direct-sequence code-division multiple-access (DS/CDMA) is a multiple access technique that is well suited to provide multirate access. Thus, in this paper, multirate communication systems are considered for the transmission of DS/CDMA wireless signals. Performance for maximum-likelihood-based detection is studied in the context of two multirate access methodologies: multicode access, where high data rate users multiplex their information streams onto multiple codes; and variable spreading length access where signature sequences of different lengths are assigned to users with different data rates. Various maximum-likelihood-based detection schemes for the variable spreading length system are considered as they can achieve near-optimal performance and thus provide reference points for comparison with suboptimal schemes. In addition, asymptotic multiuser performance measures are calculated and bounded to compare performance of the two systems  相似文献   

4.
Third-generation (3G) cellular code division multiple access (CDMA,) systems can provide an increase in capacity for system operators over existing second-generation (CDMA) systems. The gain in capacity for the base station to mobile (forward) link can be attributed to improvements in coding techniques, fast power control, and transmit diversity techniques. Additional gains in the mobile to base station (reverse) link can be attributed to the use of coherent quadrature phase shift keyed (QPSK) modulation and better coding techniques. While these enhancements can improve the performance of the system, system operators expect that with increased demand for data services, even greater capacity enhancements may be desired. There are essentially three methods, which we describe, based on diversity, spatial beamforming, and a combination of diversity and beamforming, to improve the performance of system through the use of additional antennas at the base station transmitter and receiver. The performance improvements are a function of the antenna spacings and the algorithms used to weight the antenna signals. We focus on the possibilities for the cdma2000 3G system that do not require standards changes. We highlight the performance enhancements that can be obtained on both the reverse and forward links through use of an antenna array architecture that supports a combination of beamforming and transmit diversity. We focus on the performance enhancements for the forward link  相似文献   

5.
为了提高移动通信系统的性能,通常需要在发射端进行分集。而移动通信中的发射分集一般需要在发射端使用多根天线,但许多无线设备因受尺寸或硬件复杂度的限制,一般只有单根天线。为此,专家提出了一种新的解决方法——协作通信。该方法使用带有一根天线的移动台,在多用户环境中可以共享其他移动用户的天线,这样可产生多根虚拟发射天线,进而得到相应的分集增益,改善移动通信系统的性能。  相似文献   

6.
DS/CDMA系统上行链路的2D-Rake及PPIC接收方案   总被引:8,自引:7,他引:1  
针对DS/CDMA系统的上行链路提出了2D-Rake加上强干扰并行对消(PPIC)的接收结构。该结构利用智能天线技术在空域对DOW不同于期望信号的干扰信号进行抑制,同时对期望信号的相关多径分量进行收集,利用Rake接收机对期望信号的不相关时延分量进行时间上的分集,然后再对多径合成结果进行PPIC处理,以对天线阵主瓣内的干扰信号进行进一步的抑制,该方法不仅最大程度地增强了期望信号地能量,同时对所有干扰信号进行了比较完全的抑制。仿真实验表明了该接收结构的有效性。  相似文献   

7.
Multi‐carrier technologies in general, and OFDM and MC‐CDMA in particular, are quickly becoming an integral part of the wireless landscape. In this first of a two‐part survey, the authors present the innovative transmit/receive multi‐carrier implementation of TDMA and DS‐CDMA systems. Specifically, at the transmit side, the pulse shape (in TDMA) and the chip shape (in DS‐CDMA) corresponds to a linear combining of in‐phase harmonics (called a CI signal). At the receiver side, traditional time‐domain processing (equalization in TDMA and RAKE reception in DS‐CDMA) is replaced by innovative frequency based processing. Here, receivers decompose pulse (or chip) shapes into carrier subcomponents and recombine these in a manner achieving both high frequency diversity gain and low MAI. The resulting system outperforms traditional TDMA and DS‐CDMA systems by 10–14 dB at typical BERs, and, by application of pseudo‐orthogonal pulse shapes (chip shapes), is able to double system throughput while maintaining performance gains of up to 8 dB. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Time-division-duplex code-division multiple-access (TDD-CDMA) systems have recently gained attention with their inclusion in third-generation mobile systems. In this paper, we introduce two optimized transmit preprocessing techniques to reduce multiple access interference in the downlink of TDD-CDMA systems with multiple transmit antennas that are employed at the base station (BS). In these systems, signal preprocessing is performed at the BS, so that a simplified receiver structure that consists of a one-finger correlator can be utilized at the mobile station. Analytic solutions for both of the optimized transmit preprocessing techniques are derived by minimizing the transmit mean square error. Numerical results are also provided, which demonstrate significant performance improvement when compared to the conventional RAKE system and the pre-RAKE maximum ratio combining transmit diversity system. In particular, transmit antennas can be used to increase the system capacity.  相似文献   

9.
MIMO CDMA antenna system for SINR enhancement   总被引:1,自引:0,他引:1  
We present a system to enhance signal-to-interference plus noise ratio (SINR) for multiple-input-multiple-output (MIMO) direct-sequence code-division multiple-access (DS/CDMA) communications in the downlink for frequency-selective fading environments. The proposed system utilizes a transmit antenna array at the base station and a receive antenna array at the mobile station with finite-impulse response filters at both the transmitter and receiver. We arrive at our system by attempting to find the optimal solution to a general MIMO antenna system. A single user joint optimum scenario and a multiuser SINR enhancement scenario are derived. In addition, a simplified one-finger receiver structure is introduced. Numerical results reveal that significant system performance and capacity improvement over conventional approaches are possible. We also investigate the sensitivity of the proposed system to channel estimation errors.  相似文献   

10.
OFDM (Orthogonal Frequency Division Multiplexing) is proven to be a very effective modulation and multiple access technique that enables high data rate transmission. Due to its good performance it is already implemented in several standardized technologies, and it is very promising technique for the next generation wireless communication systems. Still, further system performance improvements under severe frequency selective fading conditions are necessary, and they can be obtained implementing diversity, at either transmit or/and receive end of a wireless link. Since polarization diversity can be realized using only one compact, dual polarized antenna, it can be considered as an attractive, space and cost effective solution. Analysis presented in this paper shows that implementation of dual polarized antenna at the receiver can lead to significant performance improvement, under certain propagation conditions. In order to calculate BER (Bit Error Rate) for the considered OFDM polarization diversity system with a certain level of the received signals correlation, we propose a novel analytical method. The obtained results are compared with the ones attained by simulation.  相似文献   

11.
To provide new and/or higher rate wireless services with limited spectrum resources, frequency overlay has been naturally proposed to accommodate the new and legacy systems in a common band. We address the multiuser detection problem for overlaid code-division multiple-access (CDMA) scenarios. However, in contrast to the well-studied conventional single-rate CDMA, miscellaneous systems overlay almost always indicates the presence of multirate traffic that introduces an additional degree of freedom in receiver design-i.e., differences in the symbol rates. We concentrate on receiver design for multirate traffic, while assuming a lack of information exchange between the constituent (new and legacy) systems, as is commonplace in practice. We propose a receiver architecture based on linear parallel interference cancellation where the out-of-rate intersystem interference is estimated and subtracted by means of its characteristic subspace, thereby avoiding the need for the exact knowledge of signature waveforms of the interfering system. Simulation results validate our solution and show that the proposed receiver has better performance in various aspects than several other solutions for the same purpose.  相似文献   

12.
The paper presents a new spread spectrum communication system called orthonormal code diversity detection (OCDD)/CDMA system based on the novel concept of orthonormal-basis diversity which is a generalization of the existing spread spectrum diversity concepts such as path diversity and frequency diversity. The OCDD/CDMA system is similar to the conventional DS/CDMA system in the transmitter structure, but is different in the receiver structure as it employs the extended orthonormal basis-function set which is the union of the Walsh basis-functions multiplied by the PN sequences and, optionally, their delayed replicas. The received signal is matched to the extended basis functions, and the matched signal components are combined together after individual channel compensation. The proposed OCDD/CDMA system exhibits the bit error performance which is much improved over the conventional DS/CDMA system using maximal ratio combing. In addition, it is robust to the chip timing error, which becomes more crucial in the future DS/CDMA systems having a higher data rate and smaller chip interval. From the simulation results, we confirm that the OCDD/CDMA system is a unique spread spectrum communication technique that can effectively increase the diversity utilization in the slowly fading channel, overcoming the inherent problems in the DS/CDMA and OFDM/CDMA systems  相似文献   

13.
Differential space–time modulation (DSTM) schemes were recently proposed to fully exploit the transmit and receive antenna diversities without the need for channel state information. DSTM is attractive in fast flat fading channels since accurate channel estimation is difficult to achieve. In this paper, we propose a new modulation scheme to improve the performance of DS‐CDMA systems in fast time‐dispersive fading channels. This scheme is referred to as the differential space–time modulation for DS‐CDMA (DST‐CDMA) systems. The new modulation and demodulation schemes are especially studied for the fast fading down‐link transmission in DS‐CDMA systems employing multiple transmit antennas and one receive antenna. We present three demodulation schemes, referred to as the differential space–time Rake (DSTR) receiver, differential space–time deterministic (DSTD) receiver, and differential space–time deterministic de‐prefix (DSTDD) receiver, respectively. The DSTD receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake‐type combination; consequently, it can outperform the DSTR receiver, which employs the Rake‐type combination only, especially for moderate‐to‐high SNR. The DSTDD receiver avoids the effect of intersymbol interference and hence can offer better performance than the DSTD receiver. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Base station antenna arrays are a promising method for providing significant capacity increases in cellular mobile radio systems. This paper examines receiver structures and algorithms to assess the potential capacity gains from the employment of multiple receiver antenna elements, of different sizes, for code division multiple access (CDMA) systems. It considers antenna arrays for the mobile to-base station or reverse link of a CDMA cellular system such as the IS-95 standard. It begins with an introduction to CDMA communication systems and also addresses the general topic of antenna array receivers. Channel modelling is then discussed, as this will influence the design of CDMA receivers. The specific form of receiver array processing algorithms is then discussed and some performance comparisons provided. Finally, the most important reason for implementing antenna array systems, the capacity gains which are achievable, is indicated  相似文献   

15.
On the spectral efficiency of wideband CDMA systems   总被引:1,自引:0,他引:1  
The reverse-link spectral efficiency is evaluated for a direct-sequence (DS) code division multiple access (CDMA) cellular communication system that employs rapid closed-loop power control and coding with interleaving on channels that exhibit doubly selective Rician fading. The focus of the paper is the effect of the chip rate of the DS spread-spectrum signal on the spectral efficiency of the system. Performance is considered for systems with different numbers of demodulators in the RAKE receiver and for systems both with and without antenna diversity. Channels with different delay spectra and Doppler spreads are used to examine the performance of the system in various operating conditions. The implications of the results for the design of wideband CDMA are discussed  相似文献   

16.
In this paper, optimized transmit schemes for multiple-input multiple-output (MIMO) systems with simplified receivers are proposed for the downlink of high-speed wireless communication systems. In these systems, MIMO signal preprocessing is performed at the transmitter or base station with the receiver at the mobile station having a simplified structure that requires only limited signal processing. An important potential application for our transmit MIMO techniques is in the downlink of high-speed wireless communication systems with Vertical Bell Laboratories Layered Space-Time (V-BLAST) or a similar technique utilized in the uplink, creating a high-speed duplex system with a simplified mobile station transceiver structure. Two approaches are introduced and these depend on whether or not receive diversity is employed at the receiver. Both methods require that channel state information be available at the transmitter. In addition, some important associated issues such as peak-to-average power ratio requirements at the transmitter and robustness to downlink channel errors are also investigated and various solutions are proposed. Simulation results are provided and these show that performance improvement can be achieved when compared with other MIMO transmit schemes.  相似文献   

17.
In cellular wireless communication systems, there have been various receiver-based techniques for performance improvement. However, it may be desirable to use transmitter- based techniques to improve the down-link capacity, since the implementation complexity is less critical at a base station (BS) than at a mobile station (MS). This paper presents a transmitter- based processing for the down-link direct-sequence code-division multiple-access (DS/CDMA) systems with multiple transmit antennas. We propose a combined pre-rake/pre-decorrelating approach. This approach combines the advantage of pre-rake scheme, to achieve diversity gain and average received signal-to- noise ratio (SNR) gain, with that of pre-decorrelating scheme, to suppress multiple access interference (MAI) and multipath interference (MPI). Furthermore, to make the total transmit power the same as that without pre-rake/pre-decorrelating processing, two power normalization methods are presented. Simulation results show that the proposed schemes significantly outperform the conventional transmitter-based techniques. The effects of the number of users and the block size on the bit error rate (BER) performance are also investigated.  相似文献   

18.
In this paper, a novel merger of multicarrier code-division multiple access (MC-CDMA) and smart antenna arrays is introduced. Here, a group of Q carriers in the MC-CDMA system is applied to its own M-element smart antenna array at the base station (BS). The smart antennas are located in close proximity to one another. We generate a transmit diversity gain at the receiver by carefully moving (oscillating) the antenna array's pattern. The pattern oscillation is achieved by applying appropriate time-varying phases to array elements of each smart antenna. The beam pattern oscillation ensures a mainlobe at the position of the intended user and small oscillations in the beam pattern. This beam pattern oscillation leads to a time-varying channel with a controllable coherence time; hence, a transmit diversity benefit, in the form of a time diversity benefit, is available at the receiver. Employing MC-CDMA with the proposed smart antenna at the BS, we achieve: 1) directionality which creates high network capacity via space-division multiple access; 2) a transmit diversity gain which supports high performance at the receiver in the mobile unit; and 3) increased capacity and performance via MC-CDMA's ability to support both CDMA and frequency diversity benefits, respectively.  相似文献   

19.
Future mobile communication systems should be able to support a wide range of services with different bit rates. Spread-spectrum code-division multiple-access (CDMA) techniques have attracted much attention to be employed in such a system. Different techniques of CDMA could be used to map low-, medium-, and high-bit rates data into the same allocated bandwidth, including pure or wide-band CDMA, FDM/FH/CDMA, TDM/TH/CDMA, or a hybrid of these techniques. This paper investigates multirate pure CDMA using multiuser interference statistics derived for both Gaussian and Rayleigh fading channels. Approximation of multiuser/multipath interference, in general, helps in the theoretical approach to error performance evaluation and, in particular, is quite useful for simulation approach in a fading channel. Some results of a multirate pure CDMA system with two services (low- and high-bit rates), for both BPSK and DPSK modulation schemes, are presented and compared  相似文献   

20.
Some studies have been done on capacity of a code division multiple access (CDMA) system with mixed multirate sources. However, a vast majority of these studies have concentrated on the reverse-link. This trend comes from the fact that the capacity of a CDMA system is reverse-link limited. However, the forward-link can be a limiting link because emerging data services are likely to require higher data rates in the forward-link than in the reverse-link. In this paper, we analyze and simulate the forward-link capacity of a CDMA system with mixed multirate sources in a multipath fading channel. The outage probability of the forward-link is derived for a CDMA system with mixed multirate sources. By introducing a forward-link power factor, the forward-link Erlang capacity is obtained in a closed form. The forward-link capacity is analyzed in terms of the number of multipaths, the number of RAKE fingers in a mobile station, closed-loop power control, and impact of soft handoff. The results in this paper can be applied to overall system design of a CDMA system with multimedia services in future mobile communication systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号