首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在铸钢中加入硼元素,获得了高强度抗磨高硼铸钢.研究了淬火温度对高硼铸钢衬板显微组织和硬度的影响.结果显示,随着淬火温度提高,淬火组织硬度增加,淬火温度1000℃时,基体组织全部转变成了强韧性好的板条马氏体.高硼铸钢衬板经1000℃淬火后,再在230~240℃进行去应力回火处理,具有良好的强韧性和抗磨性,使用中衬板不会断裂,其使用寿命比高锰钢提高180%~200%,且不含贵重合金元素,生产工艺简便.  相似文献   

2.
研究了奥氏体化工艺参数对在国产NM500低合金高强度耐磨钢化学成分的基础上添加微合金元素Nb的试验钢的奥氏体晶粒长大趋势和组织硬度的影响,从而优化淬火工艺参数,使试验钢获得细小的晶粒和组织,在保证试验钢硬度的前提下,提高其冲击韧性。结果表明,含Nb量为0.043%的试验钢的奥氏体粗化温度为950℃,在950℃以下水淬获得的奥氏体晶粒尺寸细小,能使试验钢获得更好的冲击韧性。在850℃保温后水淬,随淬火保温时间的增加,试验钢组织硬度先增加后降低。为使试验钢到达NM500的硬度指标要求,淬火保温时间不能过长,控制在40 min以下为宜。  相似文献   

3.
在水冷淬火条件下,研究了淬火温度对含0.4%C和2.0%B的Fe-B-C铸造合金显微组织和宏观硬度的影响。结果表明,Fe-B-C铸造合金在淬火加热过程中发生奥氏体化。淬火温度低于900℃时,Fe-B-C铸造合金淬火组织由马氏体和少量珠光体组成。超过1050℃后,淬火组织粗大,且出现低硬度奥氏体。Fe-B-C铸造合金在900~1050℃淬火后,都可获得马氏体+硼化物组成的复合组织,硬度大于55 HRC。用这种材料制造的破碎机锤头,使用寿命达到高锰钢的2~3倍。  相似文献   

4.
研究了不同温度(950、1000、1050℃)淬火+250℃回火处理对中碳低合金耐磨钢ZG35Cr2NiMoVTi显微组织、硬度、韧性、冲击磨料磨损耐磨性能的影响。结果表明:中碳低合金耐磨钢淬火组织主要为板条状马氏体+片状马氏体+少量残余奥氏体,回火组织为回火马氏体。随着淬火温度的增加,钢的硬度逐渐下降;冲击韧性随着淬火温度的升高先增加后保持稳定。在冲击功为1J的磨损工况下,950℃水淬+250℃回火处理试样耐磨性最好;在冲击功为4.5J的磨损工况下,1000/1050℃水淬+250℃回火处理的试样耐磨性最好。  相似文献   

5.
研究了淬火温度和回火温度对ZG310-510铸钢组织和力学性能的影响.结果表明,随着淬火温度的提高,ZG310-510钢的强度、硬度和冲击韧度提高,淬火温度为1000℃达到峰值.1000℃淬火、200或600℃回火,铸钢具有良好的强韧性,200℃回火的组织为回火马氏体组织和少量残余奥氏体,600℃回火的组织主要为索氏体组织.400℃回火出现回火脆性,材料的冲击韧度最低.提出了提高ZG310-510铸钢的强韧性的热处理工艺:1000℃淬火 200/600℃回火.  相似文献   

6.
淬火温度对高硼铸钢显微组织和硬度的影响   总被引:1,自引:0,他引:1  
研究淬火温度对含碳量小于0.4%和含硼量小于2.0%的高硼铸钢显微组织和硬度的影响.高硼铸钢铸态基体组织由珠光体和铁素体组成.淬火处理后,硼化物数量变化不明显,随着淬火温度升高,基体显微硬度和试样宏观硬度提高,淬火温度超过1000℃后,硬度略有降低.在900~1100℃内淬火,都可获得强韧性好的板条马氏体基体组织.高硼铸钢中的硼化物显微硬度超过1500HV,由Fe2B和少量FeB组成.  相似文献   

7.
以锻造斗齿成品及斗齿用30CrMnSi钢亚温淬火工艺为研究对象,对斗齿成品不同部位的洛氏硬度及显微组织进行了分析;对30CrMnSi钢经不同模拟锻造余热淬火工艺处理后的组织和性能进行了对比研究。结果表明:斗齿成品表面硬度略低于次表层2~3 HRC,齿尖硬度高于齿根硬度5~10 HRC。通过模拟锻造余热分段淬火工艺,30CrMnSi钢在870 ℃水淬时,其冲击韧性最高,为74 J;当淬火温度低于870 ℃时,由于奥氏体化不均匀或较多铁素体的出现会导致冲击韧性降低;当淬火温度高于870 ℃时,由于加热时奥氏体晶粒粗大,淬火后所得马氏体也粗大,冲击韧性降低。建议生产中采用斗齿齿尖、齿根同时入水的整体淬火工艺,以使斗齿整体获得较高的硬度和韧性。  相似文献   

8.
邱联昌  李明喜 《热处理》2010,25(4):43-46
制作了一种可用于磨球的新型含钼低铬合金铸钢;测定了经不同工艺热处理后钢的硬度和耐磨性;采用光学显微镜和扫描电镜观察了钢的组织和磨损面形貌。结果表明,钢的淬火硬度随着淬火温度的升高而提高,但淬火温度过高,硬度反而下降。从相同温度淬火后,钢的硬度均随着回火温度的升高而降低。经850℃油淬和300℃回火后,钢的组织为马氏体和少量残留奥氏体,具有较高的硬度和最好的耐磨性。  相似文献   

9.
研究淬火温度对含碳量小于0.4%和含硼量小于2.0%的高硼铸钢显微组织和硬度的影响。高硼铸钢铸态基体组织由珠光体和铁素体组成。淬火处理后,硼化物数量变化不明显,随着淬火温度升高,基体显微硬度和试样宏观硬度提高,淬火温度超过1000℃后,硬度略有降低。在900~1100℃内淬火,都可获得强韧性好的板条马氏体基体组织。高硼铸钢中的硼化物显微硬度超过1500HV,由F32B和少量FeB组成。  相似文献   

10.
《铸造技术》2017,(10):2377-2379
对低硫磷Si-Mn系低合金铸钢进行热处理,研究了860℃正火预处理+890℃淬火处理后,分别在110,220,440和600℃回火处理,观察微观组织并测试相关力学性能。研究表明,220℃回火,试样组织以板条马氏体为主,均匀分布少量残余奥氏体和下贝氏体,综合力学性能最佳,硬度为48 HRC,V型缺口冲击功为41 J/cm~2;回火温度升高,材料硬度显著降低,冲击功略有提高。  相似文献   

11.
非调质钢弯臂、直臂的开发应用   总被引:11,自引:2,他引:9  
介绍了非调质钢(30MnVS和35MnVN)与调质钢(40Cr)的材料力学性能试验结果。并依据3种材料的对比试验结果,内在质量检测结果选定30MnVS钢或35MnVN钢为汽车弯、直臂用材,以替代40Cr钢制造弯、直壁,并对使用效果进行了综合性分析。  相似文献   

12.
DIBK-TBP体系萃取分离锆铪的机理   总被引:5,自引:0,他引:5  
为了解二异丁基甲酮(DIBK)-TBP体系萃取锆铪的化学行为,分别采用斜率法和饱和容量法研究DIBK和TBP在HSCN介质中协同萃取锆铪的性能及机理,结果表明:DIBK-TBP体系萃取分离锆铪时优先萃取铪,萃取反应机理为溶剂化机理,萃合物中Zr4+(Hf4+)、TBP、DIBK的摩尔比为1:1:1,其萃合物组成分别为Zr(SCN)4.TBP.DIBK和Hf(SCN)4.TBP.DIBK,并通过对负载有机相进行红外光谱分析进一步确定了萃合物可能的结构式;DIBK和TBP协同使用可以改善HSCN介质下锆铪的萃取分离效果。  相似文献   

13.
采用置氢TC21钛合金粉末模压成形+保护气氛烧结工艺,研究置氢TC21钛合金粉末模压成形-烧结合金的组织性能的变化规律.结果表明:置氢量0.22%(质量分数,下同)和0.39%的TC21粉末烧结体组织较细,致密化程度也较高,置氢量0.39%的TC21粉末烧结体退火后的抗压强度和屈服强度最高.随着置氢量的增加,置氢TC21钛合金粉末模压成形烧结体片层组织尺寸变薄、针状的组织变细,晶粒尺寸变小;置氢TC21钛合金粉末模压成形烧结体退火后组织较退火前发生了明显的均匀化和细化;烧结体真空退火后氢含量达到安全状态,其中,置氢量0.39%的TC21钛合金粉末烧结体致密效果较好、综合力学性能较高.  相似文献   

14.
回顾了静压造型的发展历史,通过典型机型的介绍,对其优缺点进行了分析,指出目前静压造型机存在的主要问题,提出高生产率、柔性化、少人(无人)操控的高可靠性静压造型线是今后发展的方向。  相似文献   

15.
铱及其合金的加工及应用   总被引:1,自引:1,他引:0  
高熔点、良好的耐腐蚀性和高温抗氧化性使得铱及其合金在高温领域有着不可替代的作用.但铱又是最难加工成型的金属之一,其应用存在很多限制.论文综述了铱及其合金的多种成型加工工艺,包括精炼、熔化、粉末冶金、变形加工和沉积,重点介绍了铱涂层的沉积方法,包括熔盐电沉积、CVD和PVD,并分析了各种方法的优缺点.最后对铱及其合金的应用进行了简要介绍.  相似文献   

16.
本文介绍了某石化装置烟气能量回收机组的工艺及设备概况、历史运行情况,及检修拆机状况,重点介绍了烟机的结垢及腐蚀情况,分析了结垢及腐蚀原因并提出了解决策略。  相似文献   

17.
采用化学成分分析、着色渗透探伤分析、电子探针分析、显微组织分析、力学性能及高温持久性能分析等方法,对大型合成氨一段炉竖琴管排运行1.0×105h的转化管进行综合分析和评估。结果表明:转化管化学成分符合技术要求,宏观组织正常,显微组织形态良好,内外表面轻微腐蚀;经高温持久性能在L-M曲线中拟合外推,该管的剩余寿命远大于2.2×104h;炉管虽使用1.0×105h满足了工艺要求,但壁厚太大,影响热效率,同时内径小,限制了触媒和流量;因此,为提高效率,建议在今后的设计中采用性能较好的材料ZG50Ni35Cr25NbM。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号