首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superfusates from rat brain slices were screened for thiol compounds after derivatization with monobromobimane by reversed-phase HPLC. Only glutathione and cysteine were detected. The Ca(2+)-dependent release of these compounds from slices of different regions of rat brain was investigated, applying a highly sensitive and reproducible quantification method, based on reduction of superfusates with dithiothreitol, reaction of thiols with iodoacetic acid, precolumn derivatization with o-phthalaldehyde reagent solution, and analysis with reversed-phase HPLC. This methodology allowed determination of reduced and total thiols in aliquots of the same superfusates. Mostly reduced glutathione and cysteine were released upon K+ depolarization and the Ca2+ dependency suggests that they originate from a neuronal compartment. The GSH release was most prominent in the mesodiencephalon, cortex, hippocampus, and striatum and lowest in the pons-medulla and cerebellum. This underscores a physiologically significant role for glutathione in CNS neurotransmission.  相似文献   

2.
Y Luo  J L Wu  J Gergely    T Tao 《Biophysical journal》1998,74(6):3111-3119
We have used the technique of resonance energy transfer in conjunction with distance geometry analysis to localize Cys133 of troponin-I (TnI) with respect to troponin-C (TnC) in the ternary troponin complex and the binary TnC.TnI complex in the presence and absence of Ca2+. Cys133 of TnI was chosen because our previous work has shown that the region of TnI containing this residue undergoes Ca2+-dependent movements between actin and TnC, and may play an important role in the regulatory function of troponin. For this purpose, a TnI mutant with a single Cys at position 133, and TnC mutants, each with a single Cys at positions 5, 12, 21, 41, 49, 89, 98, 133, and 158, were constructed by site-directed mutagenesis. The distances between TnI Cys133 and each of the nine residues in TnC were then measured. Using a least-squares minimization procedure, we determined the position of TnI Cys133 in the coordinate system of the crystal structure of TnC. Our results show that in the presence of Ca2+, TnI Cys133 is located near residue 12 beneath the N-terminal lobe of TnC, and moves away by 12.6 A upon the removal of Ca2+. TnI Cys133 and the region of TnC that undergoes major change in conformation in response to Ca2+ are located roughly on opposite sides of TnC's central helix. This suggests that the region in TnI that undergoes Ca2+-dependent interaction with TnC is distinct from that interacting with actin.  相似文献   

3.
Using a hippocampal subcellular fraction enriched in mossy fiber synaptosomes, evidence was obtained indicating that adenosine derived from a presynaptic pool of ATP may modulate the release of prodynorphin-derived peptides. and glutamic acid from mossy fiber terminals. Synaptosomal ATP was released in a Ca2+-dependent manner by K+-induced depolarization. The rapid hydrolysis of extracellular [14C]ATP in the presence of intact mossy fiber synaptosomes resulted in the production of [14C]adenosine. Micromolar concentrations of a stable adenosine analogue, 2-chloroadenosine, inhibited the K+-stimulated release of both dynorphin B and dynorphin A(1-8). 2-Chloroadenosine failed to suppress the evoked release of glutamic acid, measured in these same superfusates, unless the mossy fiber synaptosomes were pretreated with D-aspartic acid to deplete the cytosolic, Ca2+-independent, pool of this acidic amino acid. In synaptosomes pretreated in this manner, release of the remaining Ca2+-dependent pool of glutamic acid was significantly inhibited by NiCl2, 2-chloroadenosine, 5'-N-ethylcarboxamidoadenosine, cyclohexyladenosine, and R(-)-N6(2-phenylisopropyl)adenosine, but not by ATP. 2-Chloroadenosine-induced inhibition was reversed when the external CaCl2 concentration was raised from 1.8 mM to 6 mM. 8-Phenyltheophylline, an adenosine receptor antagonist, effectively blocked the inhibitory effects of 2-chloroadenosine on mossy fiber synaptosomes and significantly enhanced the K+-evoked release of both glutamic acid and dynorphin A(1-8) when added alone to the superfusion medium. These results support the proposition that depolarized hippocampal mossy fiber synaptosomes release endogenous ATP and are capable of forming adenosine from extracellular ATP, and that endogenous adenosine may act at a presynaptic site to inhibit the further release of glutamic acid and the prodynorphin-derived peptides.  相似文献   

4.
Adenosine triphosphatase activity which is Mg2+-dependent and stimulated by submicromolar concentrations of Ca2+ (as Ca . ATP) was identified in the total particulate fraction of rat pancreatic acini. Half-maximal activity (V0.5) is obtained at 100.1 +/- 6 nM Ca . ATP with a Hill coefficient of 2.2 +/- 0.1 (mean +/- S.E.; n = 4). Maximal activity was 75 +/- 19 pmol of Pi released from ATP minute-1 microgram of membrane protein-1 (mean +/- S.E.; n = 7). High affinity Ca2+-ATPase activity was unaffected by ouabain, Na+, K+, La3+, and added calmodulin. Activity was slightly reduced by ruthenium red (0.1 mM) and by oligomycin (80 micrograms/ml) but was reduced almost 50% by the phenothiazine derivative fluphenazine in a dose-related and Ca2+-dependent manner. Hydrolysis of p-nitrophenyl phosphate was 9% of the rate of ATP hydrolysis and was independent of Ca2+ concentration. However, ADP, GTP, UTP, and ITP were hydrolyzed at 76-93% the rate that ATP was hydrolyzed with V0.5 values and Hill coefficients similar to those of Ca . ATP. We conclude that rat pancreatic acini contain an enzyme for active Ca2+ translocation: ATPase activity that is Mg2+-dependent and stimulated by submicromolar concentrations of Ca . ATP. Substrate hydrolysis appears to involve positive cooperative interactions of multiple ligand-binding sites and may be regulated in part by calmodulin.  相似文献   

5.
The inhibition of Ca2+-dependent ATPase from SR [EC 3.6.1.3] by ADP was of mixed type under both low Ca2+ and high Mg2+ concentration and high Ca2+ and low Mg2+ concentrations. On the other hand, the inhibition of Na+, K+-dependent ATPase [EC 3.6.1.3] by ADP was of competitive type in the presence of low and high K+ concentrations. These results suggest that ADP is released before Pi from the phosphoenzyme with bound ADP (EPADP) in the case of Ca2+-ATPase, but that Pi is released before ADP in the case of Na+, K+-ATPase.  相似文献   

6.
A platelet membrane preparation, enriched in plasma membrane markers, took up 45Ca2+ in exchange for intravesicular Na+ and released it after the addition of inositol 1,4,5-trisphosphate (IP3). The possibility that contaminating dense tubular membrane (DTS) vesicles contributed the Ca2+ released by IP3 was eliminated by the addition of vanadate to inhibit Ca+-ATPase-mediated DTS Ca2+ sequestration and by the finding that only plasma membrane vesicles exhibit Na+-dependent Ca2+ uptake. Ca2+ released by IP3 was dependent on low extravesicular Ca2+ concentrations. IP3-induced Ca2+ release was additive to that released by Na+ addition while GTP or polyethylene glycol (PEG) had no effect. These results strongly suggest that IP3 facilitates extracellular Ca2+ influx in addition to release from DTS membranes.  相似文献   

7.
Exposure of chromaffin cells to digitonin causes the loss of many cytosolic proteins. Here we report that scinderin (a Ca(2+)-dependent actin-filament-severing protein), but not gelsolin, is among the proteins that leak out from digitonin-permeabilized cells. Chromaffin cells that were exposed to increasing concentrations (15-40 microM) of digitonin for 5 min released scinderin into the medium. One-minute treatment with 20 microM digitonin was enough to detect scinderin in the medium, and scinderin leakage levelled off after 10 min of permeabilization. Elevation of free Ca2+ concentration in the permeabilizing medium produced a dose-dependent retention of scinderin. Results were confirmed by immunofluorescence microscopy of digitonin-permeabilized cells. Subcellular fractionation of permeabilized cells showed that scinderin leakage was mainly from the cytoplasm (80%); the remaining scinderin (20%) was from the microsomal fraction. Other Ca(2+)-binding proteins released by digitonin and also retained by Ca2+ were calmodulin, protein kinase C, and calcineurins A and B. Scinderin leakage was parallel to the loss of the chromaffin cell secretory response. Permeabilization in the presence of increasing free Ca2+ concentrations produced a concomitant enhancement in the subsequent Ca(2+)-dependent catecholamine release. The experiments suggest that: (1) scinderin is an intracellular target for Ca2+, (2) permeabilization of chromaffin cells with digitonin in the presence of micromolar Ca2+ concentrations retained Ca(2+)-binding proteins including scinderin, and (3) the retention of these proteins may be related to the increase in the subsequent Ca(2+)-dependent catecholamine release observed in permeabilized chromaffin cells.  相似文献   

8.
Lysophospholipids caused the release of 45Ca2+ from isolated rat liver mitochondria incubated at 37 degrees C in the presence of low concentrations of free Ca2+, ATP, Mg2+, and phosphate ions. The concentrations of lysophosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidic acid and lysophosphatidylinositol which gave half-maximal effects were 5, 26, 40 and 56 microM, respectively. The effects of lysophosphatidylethanolamine were not associated with a significant impairment of the integrity of the mitochondria as monitored by measurement of membrane potential and the rate of respiration. Lysophosphatidylethanolamine did not induce the release of Ca2+ from a microsomal fraction, or enhance Ca2+ inflow across the plasma membrane of intact cells, but did release Ca2+ from an homogenate prepared from isolated hepatocytes and incubated under the same conditions as isolated mitochondria. The proportion of mitochondrial 45Ca2+ released by lysophosphatidylethanolamine was not markedly affected by altering the total amount of Ca2+ in the mitochondria, the concentration of extramitochondrial Mg2+, by the addition of Ruthenium Red, or when oleoyl lysophosphatidylethanolamine was employed instead of the palmitoyl derivative. The effects of 5 microM-lysophosphatidylethanolamine were reversed by washing the mitochondria. The possibility that lysophosphatidylethanolamine acts to release Ca2+ from mitochondria in intact hepatocytes following the binding of Ca2+-dependent hormones to the plasma membrane is briefly discussed.  相似文献   

9.
Human red cells were treated with 100 microM Ca2+ and ionophore A 23187. This treatment induces remarkable changes in the activities of the two major proteolytic systems of red cells, i.e. Ca2+-dependent neutral proteinase and acid endopeptidases. Ca2+-dependent neutral proteinase undergoes intracellularly preliminary activation of the inactive proenzyme species, followed by eventual inactivation through self-proteolysis. Transient activation is shown by selective degradation of cytoskeletal proteins known to be targets of this enzyme system. Concomitantly, acid endopeptidase activity is substantially released from the membrane into the cytosol. Preliminary inactivation of the Ca2+-dependent neutral proteinase by exposure of Glucose 6-phosphate dehydrogenase-deficient red cells to auto-oxidizing divicine prevents alterations induced by Ca2+ loading on cytoskeletal membrane proteins, while leaving solubilization of acid endopeptidase activity unaffected. The two events, although dependent on Ca2+ loading, are therefore unrelated to each other.  相似文献   

10.
CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment.  相似文献   

11.
Endogenous substrates (phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine) for the Ca2+-dependent base-exchange reaction were investigated using bovine retinal microsomes. The amounts of the three bases, serine, ethanolamine and choline, released from the membranes and the amount of phosphatidic acid generated in the membranes were measured in the presence of Ca2+ with or without exogenous bases. When the membranes were incubated with Ca2+ alone, the three bases were liberated into the water-soluble fractions accompanied by accumulation of phosphatidic acid, suggesting the presence of Ca2+-dependent phospholipase D-like activity. When an exogenous base was added to the reaction mixture, the liberation of the other two bases increased slightly and the formation of phosphatidic acid decreased markedly. The exogenous base also stimulated the liberation of the same base from prelabeled phospholipids. Accompanying these changes, the exogenous base was incorporated into the membrane phospholipid. With respect to pH profile, time course and metal requirements, both the base incorporation and phospholipase D-like activity were quite similar. The amount of base incorporated generally agreed with both the decreased amount of phosphatidic acid formed and the increased amount of base released. These results suggest that, beside the base-exchange reaction, phospholipase D-like activity plays an important role in Ca2+-dependent base incorporation into bovine retinal membranes.  相似文献   

12.
C B Klee  M H Krinks 《Biochemistry》1978,17(1):120-126
The Ca2+-dependent, reversible, interaction of cyclic adenosine 3',5'-monophosphate (cAMP) phosphodiesterase with its activator has been used to purify the enzyme by affinity chromatography. Activator-dependent cAMP phosphodiesterase is only a minor component of the proteins specifically adsorbed in the presence of Ca2+ by the Ca2+-dependent activator protein coupled to Sepharose and subsequently released by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The major protein component can be partially resolved from the enzyme by gel filtration on Sephadex G-200. This protein has been purified to apparent homogeneity and shown to be composed of two polypeptide chains with molecular weights of 61,000 and 15,000 respectively. This protein is, by itself, devoid of phosphodiesterase activity and inhibits the activation of cAMP phosphodiesterase by its activator without affecting the basal activity. Thus, activation of cAMP phosphodiesteriase by the Ca2+-dependent activator protein may be controlled by interactions with yet a third component of the enzyme complex.  相似文献   

13.
Calcium (Ca2+) is a highly versatile second messenger that regulates various cellular processes. Previous studies showed that elevation of intracellular Ca2+ regulates the activity of Na+/H+ exchanger 3 (NHE3). However, the effect of Ca2+-dependent signaling on NHE3 activity varies depending on cell types. In this study, we report the identification of IP3 receptor-binding protein released with IP3 (IRBIT) as a NHE3 interacting protein and its role in regulation of NHE3 activity. IRBIT bound to the carboxyl-terminal domain of NHE3, which is necessary for acute regulation of NHE3. Ectopic expression of IRBIT resulted in Ca2+-dependent activation of NHE3 activity, whereas silencing of endogenous IRBIT resulted in inhibition of NHE3 activity. Ca2+-dependent stimulation of NHE3 activity was dependent on the binding of IRBIT to NHE3. Previously Ca2+-dependent inhibition of NHE3 was demonstrated in the presence of NHERF2. Co-expression of IRBIT was able to reverse the NHERF2-dependent inhibition of NHE3. We also showed that IRBIT-dependent activation of NHE3 involves exocytic trafficking of NHE3 to the plasma membrane and this activation was blocked by inhibition of calmodulin (CaM) or CaM-dependent kinase II. These results suggest that the overall effect of Ca2+ on NHE3 activity is balanced by IRBIT-dependent activation and NHERF2-dependent inhibition.  相似文献   

14.
In cell-free extracts of rat liver macrophages (Kupffer cells) phospholipase A2 was found to be rapidly associated with the particulate fraction in a Ca(2+)-dependent manner at Ca2+ concentrations of 0.1-1.0 microM. This is also the range of the levels of intracellular Ca2+ reported for basal and various stimulated conditions. After translocation, phospholipase A2 could be released from the membranes in the presence of Ca2+ chelators, increasing the specific activity of phospholipase A2 in the supernatant fraction. These findings support the view that translocation is a regulatory mechanism of phospholipase A2 by bringing the enzyme to its substrate. Unlike the situation with protein kinase C, Mg2+ exerted little effect on phospholipase A2 translocation, indicating that this process is regulated in vivo mainly by fluctuations of the intracellular Ca2+ content.  相似文献   

15.
The two Ca2+-dependent cysteine proteases, micro- and m-calpain, are involved in various Ca2+-linked signal pathways but differ markedly in their Ca2+ requirements for activation. We have determined the structure of a micro-like calpain, which has 85% micro-calpain sequence (the first 48 and the last 62 residues of the large subunit are those from m-calpain) and a low Ca2+ requirement. This construct was used because micro-calpain itself is too poorly expressed. The structure of micro-like calpain is very similar in overall fold to that of m-calpain as expected, but differs significantly in two aspects. In comparison with m-calpain, the catalytic triad residues in micro-like calpain, His and Cys, are much closer together in the absence of Ca2+, and significant portions of the Ca2+ binding EF-hand motifs are disordered and more flexible. These structural differences imply that Ca2+-free micro-calpain may represent a partially activated structure, requiring lower Ca2+ concentration to trigger its activation.  相似文献   

16.
Recoverin is a member of the neuronal calcium sensor (NCS) family of EF-hand calcium binding proteins. In a visual cycle of photoreceptor cells, recoverin regulates activity of rhodopsin kinase in a Ca2+-dependent manner. Like all members of the NSC family, recoverin contains a conserved cysteine (Cys38) in nonfunctional EF-hand 1. This residue was shown to be critical for activation of target proteins in some members of the NCS family but not for interaction of recoverin with rhodopsin kinase. Spectrophotometric titration of Ca2+-loaded recoverin gave 7.6 for the pKa value of Cys38 thiol, suggesting partial deprotonation of the thiol in vivo conditions. An ability of recoverin to form a disulfide dimer and thiol-oxidized monomer under mild oxidizing conditions was found using SDS-PAGE in reducing and nonreducing conditions and Ellman's test. Both processes are reversible and modulated by Ca2+. Although formation of the disulfide dimer takes place only for Ca2+-loaded recoverin, accumulation of the oxidized monomer proceeds more effectively for apo-recoverin. The Ca2+ modulated susceptibility of the recoverin thiol to reversible oxidation may be of potential importance for functioning of recoverin in photoreceptor cells.  相似文献   

17.
Platelets have previously been shown to contain a membrane skeleton that is composed of actin filaments, actin-binding protein, and three membrane glycoproteins (GP), GP Ib, GP Ia, and a minor glycoprotein of Mr = 250,000. The present study was designed to determine how the membrane glycoproteins were linked to actin filaments. Unstimulated platelets were lysed with Triton X-100, and the membrane skeleton was isolated on sucrose density gradients or by high-speed centrifugation. The association of the membrane glycoproteins with the actin filaments was disrupted when actin-binding protein was hydrolyzed by activity of the Ca2+-dependent protease, which was active in platelet lysates upon addition of Ca2+ in the absence of leupeptin. Similarly, activation of the Ca2+-dependent protease in intact platelets by the addition of a platelet agonist also caused the membrane glycoproteins to dissociate from the membrane skeleton. Affinity-purified actin-binding protein antibodies immunoprecipitated the membrane glycoproteins from platelet lysates in which actin filaments had been removed by DNase I-induced depolymerization and high-speed centrifugation. These results demonstrate that actin-binding protein links actin filaments of the platelet membrane skeleton to three plasma membrane glycoproteins and that filaments are released from their attachment site when actin-binding protein is hydrolyzed by the Ca2+-dependent protease within intact platelets during platelet activation.  相似文献   

18.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The goal of this study was to relate conformational changes in the N-terminal domain of chicken troponin I (TnI) to Ca2+ activation of the actin-myosin interaction. The two cysteine residues in this region (Cys48 and Cys64) were labeled with two sulfhydryl-reactive pyrene-containing fluorophores [N-(1-pyrene)maleimide, and N-(1-pyrene)iodoacetamide]. The labeled TnI showed a typical fluorescence spectrum: two sharp peaks of monomer fluorescence and a broad peak of excimer fluorescence arising from the formation of an excited dimer (excimer). Results obtained show that forming a binary complex of labeled TnI with skeletal TnC (sTnC) in the absence of Ca2+ decreases the excimer fluorescence, indicating a separation of the two residues. This reduction in excimer fluorescence does not occur when labeled TnI is complexed with cardiac TnC (cTnC). The latter causes only partial activation of the Ca2+-dependent myofibrillar ATPase. The binding of Ca2+ to the two N-terminal sites of sTnC causes a significant decrease in excimer fluorescence and an increase in monomer fluorescence in complexes of labeled TnI with skeletal TnC or TnC/TnT, while Ca2+ binding to site II of cTnC only causes an increase in monomer fluorescence but no change in excimer fluorescence. Thus a conformational change in the N-terminal region of TnI may be necessary for full activation of muscle contraction.  相似文献   

20.
Vascular smooth muscle contains large amounts of a Ca2+-dependent protease. Similar to a Ca2+-dependent protease previously purified from chicken gizzard smooth muscle (Hathaway, D. R., Werth, D. K., and Haeberle, J. R. (1982) J. Biol. Chem. 257, 9072-9077), the mammalian vascular muscle protease is a heterodimer consisting of 76,000- and 30,000-dalton subunits (IIa). The enzyme can undergo autolysis in the presence of Ca2+ to produce a smaller species consisting of 76,000- and 18,000-dalton subunits (IIb). Autolysis greatly reduces the Ca2+ dependence of catalytic activity. The autolytic species, IIb, was approximately 23-fold more sensitive to Ca2+ (K0.5 = 39 microM) than the native enzyme, IIa (K0.5 = 891 microM). In this communication, we report that phosphatidylinositol and to a lesser extent one metabolic derivative, dioleoylglycerol, stimulate autolysis of the vascular Ca2+-dependent protease by reducing the Ca2+ for autolysis from K0.5 = 680 microM in the absence of lipid to K0.5 = 87 microM in the presence of both phosphatidylinositol and dioleoylglycerol. Moreover, the reduction in the Ca2+ requirement for autolysis produced by the phosphatidylinositol was antagonized by the phospholipid-binding drug, trifluoperazine. In addition, the effect of phosphatidylinositol was specific for autolysis, and none of several phospholipids or derivatives tested altered the Ca2+ dependence or maximal rate for protein degradation of the autolytic product, IIb. Our results suggest that autolysis may be an important initial step in the activation of the Ca2+-dependent protease in vascular smooth muscle and that this step may be regulated by a combination of Ca2+ and phosphatidylinositol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号