首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female mate choice and male–male competition are the typical mechanisms of sexual selection. However, these two mechanisms do not always favour the same males. Furthermore, it has recently become clear that female choice can sometimes benefit males that reduce female fitness. So whether male–male competition and female choice favour the same or different males, and whether or not females benefit from mate choice, remain open questions. In the horned beetle, Gnatocerus cornutus, males have enlarged mandibles used to fight rivals, and larger mandibles provide a mating advantage when there is direct male–male competition for mates. However, it is not clear whether females prefer these highly competitive males. Here, we show that female choice targets male courtship rather than mandible size, and these two characters are not phenotypically or genetically correlated. Mating with attractive, highly courting males provided indirect benefits to females but only via the heritability of male attractiveness. However, mating with attractive males avoids the indirect costs to daughters that are generated by mating with competitive males. Our results suggest that male–male competition may constrain female mate choice, possibly reducing female fitness and generating sexual conflict over mating.  相似文献   

2.
Theory predicts that the strength of male mate choice should vary depending on male quality when higher-quality males receive greater fitness benefits from being choosy. This pattern extends to differences in male body size, with larger males often having stronger pre- and post-copulatory preferences than smaller males. We sought to determine whether large males and small males differ in the strength (or direction) of their preference for large, high-fecundity females using the fruit fly, Drosophila melanogaster. We measured male courtship preferences and mating duration to show that male body size had no impact on the strength of male mate choice; all males, regardless of their size, had equally strong preferences for large females. To understand the selective pressures shaping male mate choice in males of different sizes, we also measured the fitness benefits associated with preferring large females for both large and small males. Male body size did not affect the benefits that males received: large and small males were equally successful at mating with large females, received the same direct fitness benefits from mating with large females, and showed similar competitive fertilization success with large females. These findings provide insight into why the strength of male mate choice was not affected by male body size in this system. Our study highlights the importance of evaluating the benefits and costs of male mate choice across multiple males to predict when differences in male mate choice should occur.  相似文献   

3.
Previous studies on tree crickets have demonstrated female choice of males based on size and courtship feeding but less is known about sexual selection under conditions of direct mating competition. I studied courtship, aggression and mating of the black-horned tree cricket Oecanthus nigricornis (Walker) to test size-related sexual selection under conditions of direct sexual competition. Results show that larger individuals of both sexes mated more frequently than their smaller counterparts, and this was due to the ability of large individuals to out compete rivals. Large males achieved the advantage by aggressively reducing courtship by small males, whereas large females responded to male courtship more quickly but with little aggression. Although there was no evidence here for mate choice, there were advantages for having larger mates; fecundity increased with female size and spermatophores (which females consume after mating) increased with male size. Size of the specialized metanotal courtship gift, however, was not related to male size.  相似文献   

4.
The mating success of larger male Drosophila melanogaster in the laboratory and the wild has been traditionally been explained by female choice, even though the reasons are generally hard to reconcile. Female choice can explain this success by virtue of females taking less time to mate with preferred males, but so can the more aggressive or persistent courtships efforts of large males. Since mating is a negotiation between the two sexes, the behaviors of both are likely to interact and influence mating outcomes. Using a series of assays, we explored these negotiations by testing for the relative influence of male behaviors and its effect on influencing female courtship arousal threshold, which is the time taken for females to accept copulation. Our results show that large males indeed have higher copulation success compared to smaller males. Competition between two males or an increasing number of males had no influence on female sexual arousal threshold;—females therefore may have a relatively fixed ‘arousal threshold’ that must be reached before they are ready to mate, and larger males appear to be able to manipulate this threshold sooner. On the other hand, the females’ physiological and behavioral state drastically influences mating; once females have crossed the courtship arousal threshold they take less time to mate and mate indiscriminately with large and small males. Mating quicker with larger males may be misconstrued to be due to female choice; our results suggest that the mating advantage of larger males may be more a result of heightened male activity and relatively less of female choice. Body size per se may not be a trait under selection by female choice, but size likely amplifies male activity and signal outputs in courtship, allowing them to influence female arousal threshold faster.  相似文献   

5.
Mate sampling and the sexual conflict over mating in seaweed flies   总被引:3,自引:1,他引:2  
The order in which females encounter, or sample, males in apopulation may have important consequences for mate choice,with the information gathered about males influencing boththe preference function and degree of choosiness of females.Sexual selection may be affected as a result. Sampling of particularsubsets of males may be a crucial component of individual variation in mate preferences within populations. However, the sequencein which males are sampled may also be important in specieswithout traditional, active mate choice, such as when sexualselection involves sexual conflict over mating. This wouldoccur if the likelihood of a female mating with a male of acertain phenotype changes as a result of previous encounters.We examined the effects of encountering males differing inbody size, a sexually selected phenotype, in the seaweed flyCoelopa frigida. Sexual selection occurs in this species asa result of a sexual conflict over mating. We show that theoutcome of the sexual conflict is independent of the orderin which males are encountered by female seaweed flies, withthe overall mating advantage to large males being unaffected.In addition, we explored female preference functions and evaluatethe heterogeneity in female willingness to mate. We suggestthat consideration of mate sampling theory is valuable whenexamining mate choice in species in which sexual selectionis driven by sexual conflict.  相似文献   

6.
Males' evolutionary responses to experimental removal of sexual selection   总被引:7,自引:0,他引:7  
We evaluated the influence of pre- and post-copulatory sexual selection upon male reproductive traits in a naturally promiscuous species, Drosophila melanogaster. Sexual selection was removed in two replicate populations through enforced monogamous mating with random mate assignment or retained in polyandrous controls. Monogamous mating eliminates all opportunities for mate competition, mate discrimination, sperm competition, cryptic female choice and, hence, sexual conflict. Levels of divergence between lines in sperm production and male fitness traits were quantified after 38-81 generations of selection. Three a priori predictions were tested: (i) male investment in spermatogenesis will be lower in monogamy-line males due to the absence of sperm competition selection, (ii) due to the evolution of increased male benevolence, the fitness of females paired with monogamy-line males will be higher than that of females paired with control-line males, and (iii) monogamy-line males will exhibit decreased competitive reproductive success relative to control-line males. The first two predictions were supported, whereas the third prediction was not. Monogamy males evolved a smaller body size and the size of their testes and the number of sperm within the testes were disproportionately further reduced. In contrast, the fitness of monogamous males (and their mates) was greater when reproducing in a non-competitive context: females mated once with monogamous males produced offspring at a faster rate and produced a greater total number of surviving progeny than did females mated to control males. The results indicate that sexual selection favours the production of increased numbers of sperm in D. melanogaster and that sexual selection favours some male traits conferring a direct cost to the fecundity of females.  相似文献   

7.
Understanding the evolution and maintenance of female mate choice requires information on both the benefits (the sum of direct and indirect benefits) and costs of selective mating. In this study, I assessed the fitness consequences of female mate choice in a freshwater crustacean. In Hyalella amphipods, males attempt to form precopulatory pairs with females. Large males, bearing large posterior gnathopods, tend to be over-represented in precopulatory pairs. I show that females receive both direct (reduced risk of predation while paired) and indirect (sexy sons) benefits from mating with these males. Furthermore, the behavioral mechanisms used to filter male phenotypes carry no detectable energetic cost for females. Thus, females that choose males with successful phenotypes are expected to have higher Darwinian fitness than females that mate at random. This study shows that direct and indirect selection act together to favor large male size, which explains the sexual size dimorphism and size-based mating biases observed in this species.  相似文献   

8.
In Pieris napi, female fitness increases with number of matings, but wild females mate at an unexpectedly low rate. From a sexual conflict perspective this could be because males manipulate female remating, or alternatively, because wild females experience costs associated with remating which are not applicable under laboratory conditions. To get an indication which sex controls remating and/or the different sexes’ relative costs and benefits of remating, we here test whether female mating frequency is affected by male courtship intensity. We found no effect on female mating frequency or lifespan. This indicates that (i) females control remating and their optimal mating frequency is lower compared to males, or (ii) males can manipulate female remating. We argue that both these alternatives may apply simultaneously to P. napiand that they are inseparable.  相似文献   

9.
Theory predicts that males will benefit when they bias their mating effort towards females of higher reproductive potential, and that this discrimination will increase as males become more resource limited. We conducted a series of experiments to test these predictions in a laboratory population of the fruitfly, Drosophila melanogaster. In this species, courtship and copulation have significant costs to males, and females vary greatly in fecundity, which is positively associated with body size. When given a simultaneous choice between small and large virgin females, males preferentially mated with larger, more fecund, females. Moreover, after males had recently mated they showed a stronger preference for larger females. These results suggest that male D. melanogaster adaptively allocate their mating effort in response to variation in female quality and provide some of the first support for the theoretical prediction that male stringency in mate choice increases as resources become more limiting.  相似文献   

10.
In many species, males can influence the amount of resources their mates invest in reproduction. Two favoured hypotheses for this observation are that females assess male quality during courtship or copulation and alter their investment in offspring accordingly, or that males manipulate females to invest heavily in offspring produced soon after mating. Here, we examined whether there is genetic variation for males to influence female short-term reproductive investment in Drosophila melanogaster, a species with strong sexual selection and substantial sexual conflict. We measured the fecundity and egg size of females mated to males from multiple isofemale lines collected from populations around the globe. Although these traits were not strongly influenced by the male's population of origin, we found that 22 per cent of the variation in female short-term reproductive investment was attributable to the genotype of her mate. This is the first direct evidence that male D. melanogaster vary genetically in their proximate influence on female fecundity, egg size and overall reproductive investment.  相似文献   

11.
Sexual selection, through female choice and/or male–male competition, has influenced the nature and direction of sexual size dimorphism in numerous species. However, few studies have examined the influence of sperm competition on size dimorphism. The orb‐web spider Nephila edulis has a polygamous mating system and extreme size dimorphism. Additionally, the frequency distribution of male body size is extremely skewed with most males being small and few large. The duration of copulation, male size and sexual cannibalism have been identified as the significant factors determining patterns of sperm precedence in spiders. In double mating trials, females were assigned to three treatments: either they mated once with both males or the first or the second male was allowed to mate twice. Paternity was strongly associated with the duration of copulation, independent of mating order. Males that were allowed to mate twice not only doubled the duration of copulation but also their paternity. Small males had a clear mating advantage, they copulated longer than large males and fertilized more eggs. Males of different sizes used different tactics to mate. Large males were more likely to mate through a hole they cut into the web, whereas small males approached the female directly. Furthermore, small males usually mated at their first attempt but large males required several attempts before mating took place. There was no obvious female reaction towards males of different sizes.  相似文献   

12.
Traditional models of sexual selection posit that male courtship signals evolve as indicators of underlying male genetic quality. An alternative hypothesis is that sexual conflict over mating generates antagonistic coevolution between male courtship persistence and female resistance. In the scarabaeine dung beetle Onthophagus taurus, females are more likely to mate with males that have high courtship rates. Here, we examine the effects of exposing females to males with either high or low courtship rates on female lifetime productivity and offspring viability. Females exposed to males with high courtship rates mated more often and produced offspring with greater egg-adult viability. Female productivity and lifespan were unaffected by exposure to males with high courtship rates. The data are consistent with models of sexual selection based on indirect genetic benefits, and provide little evidence for sexual conflict in this system.  相似文献   

13.
Abstract Female mate choice has been demonstrated in a wide variety of species and is now accepted as an important factor in sexual selection. One of the remaining questions, however, is why females prefer specific males. Do females or their offspring benefit from their choice? Or do females choose mates to minimize costs of mating? Here we show that, in the ovoviviparous cockroach Nauphoeta cinerea, where sexual selection has been well documented, females chose mates to avoid costly male manipulation. Females were partnered with preferred or nonpreferred mates, and fitness of the females measured. We found that females lived longer when they mated with preferred males. Female lifespan depended on the rate at which offspring developed from egg to parturition: slower development led to longer life. We manipulated the male pheromone and showed that the component of the pheromone blend that makes males attractive to females also delayed parturition. Thus, like other aspects of sexual conflict in this species, offspring development and thereby the mother's lifespan depended on exposure of females to specific components of the male pheromone. Males benefit from manipulating offspring development because females with accelerated parturition remained unreceptive whereas females with slower developing offspring readily remated after giving birth to their offspring. Our results suggest a hormone‐like role for the male pheromone in N. cinerea and provide the first direct evidence of mate choice to avoid male manipulation. This study shows that dominant males may not be preferred males if they are manipulating females, why multiple components with contrasting effects can exist in a sexual signal, and emphasizes the complex fitness relationships that can arise in species with sexual conflict.  相似文献   

14.
In many animals, body size plays a crucial role in mating success in the context of competition and preference for mates. Increasing evidence has shown that male mate preference can be size‐dependent and, therefore, an important driver of size‐assortative mating. To test this theory, mate choice experiments were performed during the three consecutive stages of mating behaviour, namely trail following, shell mounting and copulation, in the dioecious mangrove snail, Littoraria ardouiniana. These experiments identified two possible forms of size‐dependent male mate preference which could contribute to the formation of size‐assortative mating in these snails. Firstly, whereas small males were unselective, large males were selective and preferred to follow mucus trails laid by large females. Alternatively, the results can also be interpreted as all males were selective and adopted a mating strategy of selecting females similar to, or larger than, their own sizes. Both small and large males also copulated for longer with large than with small females, and this was more pronounced in large males. When two males encountered a female, they engaged in physical aggression, with the larger male excluding the smaller male from copulating with the female. This study, therefore, demonstrated that size‐dependent male mate preference may, along with male–male competition, play an important role in driving size‐assortative mating in these mangrove snails, and this may also be the case in other species that exhibit male mate choice.  相似文献   

15.
Variations in male body size are known to affect inter‐ and intrasexual selection outcomes in a wide range of animals. In mating systems involving sexual signaling before mating, body size often acts as a key factor affecting signal strength and mate choice. We evaluated the effect of male size on courtship displays and mating success of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Wing vibrations performed during successful and unsuccessful courtships by large and small males were recorded by high‐speed videos and analyzed through frame‐by‐frame analysis. Mating success of large and small males was investigated. The effect of male–male competition on mating success was evaluated. Male body size affected both male courtship signals and mating outcomes. Successful males showed wing‐borne signals with high frequencies and short interpulse intervals. Wing vibrations displayed by successful large males during copulation attempt had higher frequencies over smaller males and unsuccessful large males. In no‐competition conditions, large males achieved higher mating success with respect to smaller ones. Allowing large and small males to compete for a female, large males achieve more mating success over smaller ones. Mate choice by females may be based on selection of the larger males, able to produce high‐frequency wing vibrations. Such traits may be indicative of “good genes,” which under sexual selection could means good social‐interaction genes, or a good competitive manipulator of conspecifics.  相似文献   

16.
Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to 'precopulatory' male mate choice, some insects exhibit 'cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform ('mating investment') Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways.  相似文献   

17.
Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation occurs independently of sexual selection.  相似文献   

18.
Sexual isolation is often assumed to arise because choosy females recognize and reject heterospecific males as mates. Yet in taxa in which both males and females are choosy, males might also recognize and reject heterospecific females. Here, we asked about the relative contribution of the sexes to the strong sexual isolation found in limnetic–benthic species pairs of threespine sticklebacks, which show mutual mate choice. We asked whether males and females of the two species recognize conspecifics and also prefer to mate with them. We found evidence for mate recognition by both sexes but only females prefer conspecifics. The nature of male courtship depended on which species of female they were courting, indicating that males recognized conspecific females and differentiated them from heterospecifics. However, males courted both species of females with equal vigor and changed courtship in a manner that would increase the chance of mating with heterospecifics. Females both recognized conspecifics and strongly preferred them. They responded very little to heterospecific male courtship and almost never mated with them. Therefore, males are likely to undermine sexual isolation, but females uphold it. Despite mutual mate choice and mate recognition in both sexes, females are primarily responsible for sexual isolation in these taxa.  相似文献   

19.
Conflicts between the sexes over control of reproduction are thought to lead to a cost of sexual selection through the evolution of male traits that manipulate female reproductive physiology and behaviour, and female traits that resist this manipulation. Although studies have begun to document negative fitness effects of sexual conflict, studies showing the expected association between sexual conflict and the specific behavioural mechanisms of sexual selection are lacking. Here we experimentally manipulated the opportunity for sexual conflict in the cockroach. Nauphoeta cinerea and showed that, for this species, odour cues in the social environment influence the behavioural strategies and fitness of males and females during sexual selection. Females provided with the opportunity for discriminating between males but not necessarily mating with preferred males produced fewer male offspring than females mated at random. The number of female offspring produced was not affected, nor was the viability of the offspring. Experimental modification of the composition of the males' pheromone showed that the fecundity effects were caused by exposure to the pheromone component that makes males attractive to females but also makes males less likely to be dominant. Female mate choice therefore carries a demographic cost but functions to avoid male manipulation and aggression. Male-male competition appears to function to circumvent mate choice rather than directly manipulating females, as the mate choice can be cryptic. The dynamic struggle between the sexes for control of mating opportunities and outcomes in N. cinerea therefore reveals a unique role for sexual conflict in the evolution of the behavioural components of sexual selection.  相似文献   

20.
Sisodia S  Singh BN 《Genetica》2004,121(2):207-217
Mate choice based on body size is widespread and can have numerous consequences. We present data, which show the effect of male and female body size on sexual selection in Drosophila ananassae. The relationships between wing size, locomotor activity, mating latency, courtship pattern, fertility and mating success were studied. Mating latency was negatively correlated with wing length and with locomotor activity, while wing length and locomotor activity was positively correlated in males as well as in females. In female- and male-choice, we found that mate choice influenced size-assortative mating by: (1) large and small males preferring to mate with large females, (2) large males successfully competing for large females, leaving small males to mate with small females. Males increased their reproductive success by mating with large and more fecund females. In addition, in pairs of long/short winged flies, long winged flies courted and mated more successfully than short winged flies and they also have longer duration of copulation and more progeny than short winged flies. We found sterile mating in pairs of small winged males and females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号