首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Does biochar influence soil physical properties and soil water availability?   总被引:10,自引:0,他引:10  

Aims

This study aims to (i) determine the effects of incorporating 47 Mg ha?1 acacia green waste biochar on soil physical properties and water relations, and (ii) to explore the different mechanisms by which biochar influences soil porosity.

Methods

The pore size distribution of the biochar was determined by scanning electron microscope and mercury porosimetry. Soil physical properties and water relations were determined by in situ tension infiltrometers, desorption and evaporative flux on intact cores, pressure chamber analysis at ?1,500 kPa, and wet aggregate sieving.

Results

Thirty months after incorporation, biochar application had no significant effect on soil moisture content, drainable porosity between –1.0 and ?10 kPa, field capacity, plant available water capacity, the van Genuchten soil water retention parameters, aggregate stability, nor the permanent wilting point. However, the biochar-amended soil had significantly higher near-saturated hydraulic conductivity, soil water content at ?0.1 kPa, and significantly lower bulk density than the unamended control. Differences were attributed to the formation of large macropores (>1,200 μm) resulting from greater earthworm burrowing in the biochar-amended soil.

Conclusion

We found no evidence to suggest application of biochar influenced soil porosity by either direct pore contribution, creation of accommodation pores, or improved aggregate stability.  相似文献   

2.
Vetterlein  Doris  Jahn  Reinhold 《Plant and Soil》2004,258(1):307-327
Soil solution composition changes with time and distance from the root surface as a result of mass flow, diffusion, plant nutrient uptake and root exudation. A model system was designed, consisting of a root compartment separated from the bulk soil compartment by a nylon net (30 m mesh size), which enabled independent measurements of the change of soil solution composition and soil water content with increasing distance from the root surface (nylon net). K+ concentration in the rhizosphere soil solution decreased during the initial growth stage (12 days after planting, DAP). Thereafter K+ accumulated with time, due to mass flow as the dominating process. The extend of K+ accumulation depended on the initial fertiliser application. As K+ concentrations in soil solution increase, not only as a result of transport exceeding uptake, but also as a result of decreasing soil water content, it is hypothesised that K concentration in soil solution is not the only trigger for the activity of K transporters in membranes, but ABA accumulation in roots induced by decreasing soil matric potentials may add to the regulation. A strong decrease of rhizosphere pH with time is observed as a result of H+ efflux from the roots in order to maintain cation-anion balance. In addition the K+ to Ca2+ ratio was altered continuously during the growing period, which has an impact on Ca2+ uptake and thus firmness of cell walls, apoplast pH, membrane integrity and activity of membrane transporters. The value of osmotic potential in the rhizosphere soil solution increased with time indicating decreasing soil water availability. Modelling approaches based on the data obtained with the system might help to fill in the time gaps caused by the low temporal resolution of soil solution sampling method.  相似文献   

3.
Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil–water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic – Fusarium proliferatum, chrono-amphiphilic – Trichoderma harzianum, and hydrophobic – Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil.  相似文献   

4.
Research in the soil of the tropics mostly has demonstrated the decline of soil organic carbon (SOC) after conversion of primary forest to plantation and cultivated lands. This paper illustrates the dynamics of SOC on the island of Java, Indonesia, from 1930 to 2010. We used 2002 soil profile observations containing organic carbon (C) analysis in the topsoil, which were collected by the Indonesian Center for Agricultural Land Resources Research & Development from 1923 to 2007. Results show the obvious decline of SOC values from around 2% in 1930–1940 to 0.8% in 1960–1970. However, there has been an increase of SOC content since 1970, with a median level of 1.1% in the year 2000. Our analysis suggests that the human influence and agricultural practices on SOC in Java have been a stronger influence than the environmental factors. SOC for the top 10 cm has shown a net accumulation rate of 0.2–0.3 Mg C ha?1 yr?1 during the period 1990–2000. These findings give rise to optimism for increased soil C sequestration in the tropics.  相似文献   

5.
The dynamics and performance of soil biota during forest rotation were studied in monoculture beech stands forming a chronosequence of four different age-classes(30,62,111,153 yr).Biomass was monitored in major groups of microflora,microfauna,mesofauna,and macrofauna.Resource availability(litter layer,soil organic mater),biomass of the two dominant decomposer groups(microflora,earthworms)as well as the biomass of mesofauna and microfauna were found to remain quite stable during forest succession.Nevertheles...  相似文献   

6.
Calcium (Ca)-rich food can increase feeding of Lumbricidae. Earthworms can be genetically differentiated at a small spatial scale and acclimatize to the local environment during growth. Soil feeding and subsequent cast production by earthworms affects soil N mineralization. Here, we hypothesized that soil feeding and subsequent cast production by Lumbricidae species increases with high soil Ca content and that this increase is stronger in worms from high-Ca soil. We also hypothesized that changes in the soil feeding of Lumbricidae species along with the Ca content affects the soil N mineralization via changes in the cast production. Using a geophageous earthworm species (Eisenia japonica) originated from two different Ca environments (calcareous soil and sedimentary soil), we investigated cast production and soil N mineralization in three soils (sedimentary soil, sedimentary soil with Ca addition, and calcareous soil). The soil feeding of E. japonica from both origins did not always increase despite the high soil Ca content. We suggest that both the Ca content and other soil conditions (e.g., soil C:N) might be major factors in increasing soil feeding by E. japonica. Furthermore, the influence of Ca addition on cast production varied according to the earthworm origin. As expected, these differences in cast production are linked to soil N mineralization (especially nitrification). In summary, our study suggests that the acclimatization and/or adaptation of Lumbricidae species to local environmental factors not only soil Ca content explains spatially heterogeneous soil N mineralization in forest soil.  相似文献   

7.
Liu M Q  Chen X Y  Chen S  Li H X  Hu F 《农业工程》2011,31(6):347-352
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance.  相似文献   

8.
Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.  相似文献   

9.
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance.  相似文献   

10.
Changes in soil organic carbon (SOC) storage have the potential to affect global climate; hence identifying environments with a high capacity to gain or lose SOC is of broad interest. Many cross-site studies have found that SOC-poor soils tend to gain or retain carbon more readily than SOC-rich soils. While this pattern may partly reflect reality, here we argue that it can also be created by a pair of statistical artifacts. First, soils that appear SOC-poor purely due to random variation will tend to yield more moderate SOC estimates upon resampling and hence will appear to accrue or retain more SOC than SOC-rich soils. This phenomenon is an example of regression to the mean. Second, normalized metrics of SOC change—such as relative rates and response ratios—will by definition show larger changes in SOC at lower initial SOC levels, even when the absolute change in SOC does not depend on initial SOC. These two artifacts create an exaggerated impression that initial SOC stocks are a major control on SOC dynamics. To address this problem, we recommend applying statistical corrections to eliminate the effect of regression to the mean, and avoiding normalized metrics when testing relationships between SOC change and initial SOC. Careful consideration of these issues in future cross-site studies will support clearer scientific inference that can better inform environmental management.  相似文献   

11.
The importance of soil organic matter (SOM) in the global carbon (C) cycle has been highlighted by many studies, but the way in which SOM stabilization processes and chemical composition affect decomposition rates under natural climatic conditions is not yet well understood. To relate the temperature sensitivity of heterotrophic soil respiration to the decomposition potential of SOM, we compared temperature sensitivities of respiration rates from a 2-year long soil translocation experiment from four elevations along a ~3000 m tropical forest gradient. We determined SOM stabilization mechanisms and the molecular structure of soil C from different horizons collected before and after the translocation. Soil samples were analysed by physical fractionation procedures, 13C nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimetry (DSC). The temperature sensitivity (Q 10) of heterotrophic soil respiration at the four sites along the elevation transect did not correlate with either the available amount of SOM or its chemical structure. Only the relative distribution of C into physical soil fractions correlated with Q 10 values. We therefore conclude that physical fractionation of soil samples is the most appropriate way to assess the temperature sensitivity of SOM.  相似文献   

12.
With the species composition and/or functioning of many ecosystems currently changing due to anthropogenic drivers it is important to understand and, ideally, predict how changes in one part of the ecosystem will affect another. Here we assess if vegetation composition or soil chemistry best predicts the soil microbial community. The above and below-ground communities and soil chemical properties along a successional gradient from dwarf shrubland (moorland) to deciduous woodland (Betula dominated) were studied. The vegetation and soil chemistry were recorded and the soil microbial community (SMC) assessed using Phospholipid Fatty Acid Extraction (PLFA) and Multiplex Terminal Restriction Fragment Length Polymorphism (M-TRFLP). Vegetation composition and soil chemistry were used to predict the SMC using Co-Correspondence analysis and Canonical Correspondence Analysis and the predictive power of the two analyses compared. The vegetation composition predicted the soil microbial community at least as well as the soil chemical data. Removing rare plant species from the data set did not improve the predictive power of the vegetation data. The predictive power of the soil chemistry improved when only selected soil variables were used, but which soil variables gave the best prediction varied between the different soil microbial communities being studied (PLFA or bacterial/fungal/archaeal TRFLP). Vegetation composition may represent a more stable ‘summary’ of the effects of multiple drivers over time and may thus be a better predictor of the soil microbial community than one-off measurements of soil properties.  相似文献   

13.

Soil aggregates govern soil organic carbon (SOC) sequestration. But, sparse understanding about the process leads to inaccuracy in predicting potential of soil to stabilize C in warming world. We appraised effects of 43 years of fertilization on relative temperature sensitivity of SOC decomposition (Q10) in soil aggregates to know whether SOC quality or quantity governs Q10. Treatments were: fallow, control, 100% recommended dose of nitrogen (N), N and phosphorus (NP), N, P and potassium (NPK), and NPK + farmyard manure (FYM) (NPK + FYM). Macroaggregates, microaggregates and silt + clay (s + c) fractions were incubated for 16 weeks at 25, 35 and 45 °C, SOC quality (R0) and Q10 were computed. SOC mineralization from macro- and micro- aggregates were 34 and 28% higher than s + c across the treatments. The s + c fraction of NPK + FYM had ~ 41, 40 and 24% higher C decay rate than NPK plots at 25, 35 and 45 °C, respectively. For s + c fraction Q10 increased over other aggregates. Mean Q10 of s + c fraction was ~ 18.3 and 17.5% higher than macro and micro-aggregate-C, respectively. R0 was the lowest for NPK + FYM, suggesting long-term manuring with balanced NPK significantly enhance recalcitrance of C. We observed Q10 of macroaggregates and s + c fraction is controlled by C quality but C quantity governs Q10 of microaggregates in Vertisol. Specifically, microaggregates of NPK + FYM were more temperature sensitive, and could be vulnerable to C loss. Hence, practices facilitating microaggregate formation should be avoided. Thus, we recommend manure application for facilitating C sequestration.

  相似文献   

14.
15.
To quantify the effects of soil temperature (Tsoil), and relative soil water content (RSWC) on soil N2O emission we measured N2O soil efflux with a closed dynamic chamber in situ in the field and from soil cores in a controlled climate chamber experiment. Additionally we analysed the effect of soil acidity, ammonium, and nitrate concentration in the field. The analysis was performed on three meadows, two bare soils and in one forest. We identified soil water content, soil temperature, soil nitrogen content, and pH as the main parameters influencing soil N2O emission. The response of N2O emission to soil temperature and relative soil water content was analysed for the field and climate chamber measurements. A non-linear regression model (DenNit) was developed for the field data to describe soil N2O efflux as a function of soil temperature, soil moisture, pH value, and ammonium and nitrate concentration. The model could explain 81% of the variability in soil N2O emission of all individual field measurements, except for data with short-term soil water changes, namely during and up to 2 h after rain stopped. We validated the model with an independent dataset. For this additional meadow site 73% of the flux variation could be explained with the model.  相似文献   

16.
17.

Background

Phosphorus (P) deficiency is wide-spread in agricultural soils. In light of increasing P fertilizer costs, it is of interest to assess the capacity of soil microbes to mobilise native soil P and added P. There is currently no method to assess P mobilisation in situ.

Methods

The soil P mobilisation potential was assessed by incubating low P soil for up to 30?days with poorly available P sources; C and N were added to increase microbial activity and ensure that only P was limiting microbial growth.

Results

The increase in microbial P from day 0 to day 15 showed that microbes were able to mobilise P from FePO4 and phytate. The P mobilisation potential (sum of microbial and resin P) of the rhizosphere soil decreased in the following order: faba bean > chickpea and white lupin > wheat. After 10?days, up to 80% of the mobilised P was microbial P, whereas after 30?days, almost all P mobilised was resin P.

Conclusions

The method developed in this study is useful assessing not only potential of a soil to mobilise P but also, by using different poorly available P sources, the mechanisms of P mobilisation.  相似文献   

18.
Seedling performance is often a limiting factor in ecological restoration. Changes in the soil microbial community generated by invasive plants contribute to seedling failure. A method to remediate invasive species‐induced changes to the soil microbial community that results in increased native species seedling performance and decreased invasive species seedling performance could have a large impact on the success of many restoration efforts. In a greenhouse experiment, we first examined the changes in the soil microbial community created by invasive compared to native grasses. Then, we investigated four microbial treatments (bacterial inoculant, fungal inoculant, fungicide, and bactericide/fungicide) to remediate microbial plant–soil feedbacks (PSFs) created by invasive species Bromus inermis and Poa pratensis and increase the performance of natives Andropogon gerardii, Elymus canadensis, Pascopyrum smithii, and Schizachyrium scoparium. We found that the PSF mitigation treatments had some context‐dependent utility for restoration. For example, all of the treatments decreased the performance of B. inermis and fungal inoculant decreased the performance of P. pratensis. However, no single treatment increased the performance of all natives. Fungicide increased the performance of A. gerardii and E. canadensis in soil previously occupied by B. inermis and the performance of S. scoparium in soil previously occupied by P. pratensis. If validated in the field, PSF mitigation treatments may have utility for restoration practitioners.  相似文献   

19.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. In this regard, the bioavailability of heavy metals in the soil–crop system is considered to be a key factor controlling plant uptake and, therefore, public health risk through food chain transfer [J. Environ. Sci. Health B 34(4) (1999) 681]. In 2002, a pot experiment was conducted to elucidate the relative significance of soil types and rice genotype on the bioavailability, uptake and partitioning of Cd by two rice cultivars with distinct affinity for Cd. The results indicated that the total uptake of Cd and accumulation in grain was dependent on both soil type and genotype effects. Cd spiking enhanced high Cd uptake and partitioning in grain. Inherent differences in soil type effecting Cd bioavailability were less significant under the Cd spiking regime as compared to non-Cd spiking. In the case of Soil-P, with low Cd bioavailability as indicated by the comparatively lower MgCl2 extractableCd, differences in metal affinity between genotypes dominated uptake. Conversely, inherent differences in soil type affecting Cd bioavailability dominated uptake in the low metal affinity cultivar treatments. Under the experimental conditions evaluated, the positive interaction between soil type and genotype results in elevated levels of Cd in rice grain with the Cd values exceeding the Chinese food guideline limit of 0.2 mg kg–1. The results indicated that Cd bioavailability and plant uptake is dependent on soil chemical and physical properties affecting Cd mobility, rice genotype and soil pollution status. The results further suggested that caution should be paid to rice production with the new high metal affinity genotypes on soils with inherent Cd bioavailability as with acidic Red Soils of Jiangxi Provinces, China.  相似文献   

20.
This paper evaluates the aboveground vegetation in relation to the soil seed bank throughout a 60-year succession process following agricultural abandonment in a semi-arid Mediterranean gypsum habitat. There is little information regarding the relationship between these two community components in the context of succession on semi-arid gypsum soils. Aboveground vegetation and the corresponding seed bank of gypsum plant communities were sampled through a chronosequence of 24 abandoned fields. Generalized linear models were used to model seed species richness and density, redundancy analyses to model the effect of time since abandonment and the effect of soil physicochemical parameters on seed bank species composition, and Mantel tests to analyze resemblance between above- and belowground species composition. In this last case, the effect of time since abandonment was controlled using a partial Mantel test. Mantel correlograms using time intervals instead of distances were used to describe the resemblance of above- to belowground species occurrence in different aged fields. No significant variability in seed species richness, seed density, or species composition due to time since abandonment was found. Differences in seed species composition were mainly due to small spatial scale predictors such as slope and soil calcium content. High correlations between species composition in the soil seed bank and the aboveground vegetation were detected during succession. The lack of a significant trend in aboveground species replacement over time was also reflected in seed bank composition. We concluded that the rapid establishment of strict gypsophyte species relied mainly on the long-term persistence of these species in the seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号