首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The phase relations in the CaGa2S4–GaSe system have been studied using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements, and its Tx phase diagram has been mapped out. The CaGa2S4–GaSe system has been shown to be a pseudobinary join of the ternary system Ca–Ga–Se. The CaGa2S4–GaSe system has been found to contain limited solid solutions based on the constituent selenides. The electrical conductivity of CaGa2S4 has been measured and its current–light behavior and photoelectric properties have been studied.  相似文献   

2.
Differential thermal analysis and x-ray diffraction data indicate that the ZnO B2O3-CuO B2O3 join of the ternary system CuO-B2O3-ZnO is pseudobinary, with eutectic phase relations and a liquid-liquid miscibility gap in the composition range 25–35 mol % CuO.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 339–340.Original Russian Text Copyright © 2005 by Kasumova, Bananyarly.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

3.
The dc conductivity of the glasses in the Fe2O3-Bi2O3-K2B4O7 system was studied at temperatures between 223 and 393 K. At temperatures from 300 to 223 K, T–1/4 (T is temperature) dependence of the conductivity was found, however, both Mott variable-range hopping and Greaves intermediate range hopping models are found to be applicable. Mott and Greaves parameters analysis gave the density of states at Fermi level N (EF) = 3.13 × 1020–21.01 × 1020 and 1.93 × 1021–16.39 × 1021 cm–3eV–1 at 240 K, respectively. The variable-range hopping conduction occurred in the temperature range T = 300–223 K, since WD was found to be large (WD = 0.08–0.14 eV for these glasses) and dominated the conduction at T < 300 K.  相似文献   

4.
In this study, coumarin-doped Pr2Se3–Tl2Se (0.00, 0.05, 0.1, 0.3 wt% coumarin) were covered on the front side of a p-Si substrate by drop coating method and thus Al/coumarin doped Pr2Se3–Tl2Se/p-Si diodes were fabricated. The electronic and optoelectronic properties of the prepared diodes were investigated. The highest rectification ratio (RR?=?IF/IR) value was found to be 2.24?×?105 for the diode having 0.05 wt% coumarin doping at dark and ±?5 V. Also, the highest Iphoto/Idark photosensitivity was found to be 1327 for the diode which has 0.1 wt% coumarin doping at 100 mW/cm2 and ??5 V. The photocurrent of the diodes is higher than the dark current and increases by the increase of the light intensity. These results confirm that the fabricated diodes show a strong photovoltaic behavior. The electronic parameters of the diodes, for example ideality factor and barrier height values, were calculated by the use of current–voltage characteristics. The transient measurement proves that the diodes show both photodiode and photocapacitor behaviors. The change on the conductance and capacitance by the frequency is attributed to the existence of interface states. Thus, the obtained results suggest that the prepared diodes might be used as a photosensor in the applications of optoelectronic.  相似文献   

5.
Catalytic combustion of methane was investigated on Pt and PdO-supported CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared by a wet impregnation method in the presence of polyvinylpyrrolidone. The catalysts were characterized by X-ray fluorescence analysis, X-ray powder diffraction, X-ray photoelectron spectra, transmission electron microscopy, and BET specific surface area measurements. The Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 and PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were selective for the total oxidation of methane into carbon dioxide and steam, and no by-products such as HCHO, CO, and H2 were obtained. The catalytic activities of the PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were relatively higher than those of the Pt-supported catalysts, due to the facile re-oxidation of metallic Pd into PdO based on lattice oxygen supplied from the CeO2–ZrO2–Bi2O3 bulk. A decrease in the calcination temperature during the preparation process was found to be effective in enhancing the specific surface area of the catalysts, whereby particle agglomeration was inhibited. Optimization of the PdO amount and calcination temperature enabled complete oxidation of methane at temperatures as low as 320 °C on the 11.6 wt% PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalyst prepared at 400 °C.  相似文献   

6.
Gadolinium doped bismuth borate glasses containing up to 30 mol% Y2O3 were prepared by fast melt quenching method. The effect of yttrium on the local order in 3B2O3 · Bi2O3 and B2O3 · Bi2O3 glass matrices, particularly on the bismuth sites, was investigated by infrared (IR) spectroscopy and electron paramagnetic resonance (EPR) of Gd3+ ions. The IR results show that the local structure is more ordered in the glass system with higher bismuth content and the progressive addition of yttrium increases the local disorder in both bismuth–borate glass matrices. The EPR results indicate that Gd3+ ions occupy both bismuth and yttrium sites and reflect the same structural disorder like that suggested by IR results.  相似文献   

7.
The kinetics of thermal dehydration of Mg3(PO4)2 · 8H2O was investigated using thermogravimetry at four different heating rates. The activation energies of the dehydration step of Mg3(PO4)2 · 8H2O were calculated through the isoconversional Ozawa and Kissinger-Akahira-Sunose (KAS) methods and iterative methods, which were found to be consistent and indicate a single mechanism. The possible conversion function of the dehydration reaction for Mg3(PO4)2 · 8H2O has been estimated through the Coats and Redfern integral equation, and a better kinetic model such as random nucleation of the “Avrami–Erofeev equation (A 3/2 model)” was found. The thermodynamic functions (ΔH*, ΔG*, and ΔS*) of the dehydration reaction are calculated by the activated complex theory and indicate that it is a non-spontaneous process when the introduction of heat is not connected.  相似文献   

8.
BaFe12O19 hexaferrite films have been produced on thermally oxidized single-crystal silicon (SiO2/Si) substrates by sequential ion-beam sputtering of BaFe2O4 and α-Fe2O3 targets in an argon-oxygen atmosphere. Their crystal structure has been studied, and the origin of the impurity phases forming during heat treatment has been identified. The results show that heat treatment may lead to the formation of eutectic melts. As a result, the hexaferrite films may contain spherulites.  相似文献   

9.
The phase equilibria in the “CaAl2Si3O10”-Na2Al2Si3O10-H2O system are analyzed using structural and thermal analysis data, and the ideal gonnardite structure is modeled. The results suggest that, to ensure a better correlation with the structures of the zeolites in this series, a new structural model of the gonnardite-based solid solution must be selected, with the structure rotated through 45° about the c axis in the ab plane.  相似文献   

10.
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C.  相似文献   

11.
The structure, microstructure, field-induced strain, ferroelectric, piezoelectric and dielectric properties of (1 ? x) (Bi0.5Na0.5)0.935Ba0.065TiO3–xSr3CuNb2O9 (BNT-BT6.5–xSCN, with x = 0, 0.003, 0.006, 0.009) ceramics were investigated. X-ray diffraction patterns show that all samples are pure perovskite structure and Sr3CuNb2O9 (SCN) effectively diffused into the 0.935Bi0.5Na0.5TiO3–0.065BaTiO3 (BNT–BT6.5) solid solution which also reflected in the Raman spectra and the energy disperse spectroscopy (EDS) analysis. With the increases of SCN content, the coercive field (E c  = 18.41 kV/cm) decreases greatly, whereas the remnant polarization (P r  = 29.11 μC/cm2) increases a little at x = 0.003 which is showed in the polarization hysteresis (PE) loops, the result indicate that the ferroelectric order would be disrupted. Around critical composition (x = 0.003) at a driving field of 60 kV/cm, a large unipolar strain of 0.29 % with a normalized strain (d 33 *  = 483 pm/V) is obtained at room temperature. The results indicate that BNT-BT6.5-xSCN ceramics with excellent properties are promising to replace lead-based piezoelectric ceramics and can be used in practical applications.  相似文献   

12.
The crystal structure of a previously unknown Np(V) sesquioxalate, Na4(NpO2)2(C2O4)3·2H2O was studied. The crystal structure consists of neptunyl(V) cations, sodium cations, oxalate anions, and water molecules of crystallization. Neptunyl(V) cations and oxalate ions form anionic chains [(NpO2)2(C2O4)3] n 4n? . The coordination polyhedron (CP) of Np (pentagonal bipyramid) contains two apical “yl” oxygen atoms and five equatorial O atoms of three oxalate ions. The CP of Na(1) and Na(2) cations are combined through the common edges into zigzag chains in the [010] direction. Two independent oxalate ions are tridentate and tetradentate ligands.  相似文献   

13.
We have studied the crystal structure and electrical properties of In2Se3〈Mn〉(1 wt % Mn) and InSe〈Mn〉 (0.5 wt % Mn) crystals. The results indicate the formation of substitutional solid solutions in the crystals. The electrical conductivity of the doped indium selenides was measured across (σC ) and along (σC ) the crystallographic axis C in the range 80–400 K, and temperature-dependent conductivity anisotropy (σC C ) data were used to evaluate the energy barrier height between the layers in the crystals.  相似文献   

14.
An all-vapor phase MCVD process has been proposed for the fabrication of fiber preforms with a Yb2O3–Al2O3–P2O5–SiO2 multicomponent glass core. We have investigated the tubular preform collapse into a rod and demonstrated approaches capable of preventing P2O5 losses in the central part of the core during the collapse process. Preforms with a flat, perfect step-index profile have been fabricated.  相似文献   

15.
A series of quasi-multilayers of YBa2Cu3O7?δ (YBCO)/Y2O3 specifically 70 × (m YBCO/n Y2O3) were prepared on SrTiO3 single crystal using pulsed-laser deposition (PLD) with a controlled deposition pulses of m = 40 and n = 2, 5, and 10 for YBCO and Y2O3, respectively. The x-ray diffraction patterns indicate that all the present quasi-multilayers exhibit good c-axis orientation. The angular dependence of critical current density (J c ) on applied magnetic field directions are systemically measured to study the anisotropic vortex pinning performances for those quasi-multilayers. It is revealed that compared with the pure YBCO films, the quasi-multilayers with n = 2, i.e., a proper constituent pulse of Y2O3, exhibits the enhanced vortex pinning abilities in all angles between c-axis orientation and the applied magnetic field direction. As well, such a quasi-multilayer film (n = 2) shows the higher lift factor J c (Θ)/ J c (90°) and much better vortex pinning properties at high fields and high temperatures, showing promising potential for coated conductor application.  相似文献   

16.
xSr0.7Ce0.2TiO3–(1???x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1???x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm?1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm?1 for FWHM of A1g mode Raman peaks suggests to a lower Q?×?f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450?°C for 4 h illustrates excellent microwave dielectric properties with ε r ?~?35.4, Q?×?f?~?11282 GHz and τ f ?~?1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.  相似文献   

17.
The purpose of this work is to study the optical properties and crystallization of glasses in the ternary system Bi2O3–MoO3–B2O3. In order to verify the obtaining of bismuth borate crystal phases several glass compositions have been selected for crystallization. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy and UV–Vis spectroscopy. The UV–Vis spectroscopy showed that the obtained glasses are transparent in the visible region. The values of optical band gap (E opt) and changes in cut-off (λc) depending on composition are reported. It was established that the increase in the MoO3 content led to decreasing the transmittance of the glasses. Moreover, the absorption edge shifts towards longer wavelength.  相似文献   

18.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

19.
New compositions in the melt-grown eutectic ceramics field are investigated for thermomechanical applications. This paper is focused on the Al2O3–Sm2O3–(ZrO2) system. The studied compositions give rise to interconnected microstructures without anisotropy along the growth direction. At variance with the binary eutectic Al2O3–SmAlO3, the homogeneity of the microstructure of the Al2O3–SmAlO3–ZrO2 ternary eutectic is less sensitive to the growth rate. Interfaces between the alumina and perovskite phases are investigated by high-resolution transmission electron microscopy (TEM). They are semi-coherent. In stepped interfaces, the facets are parallel to dense planes of each phase. The steps have a dislocation character and may accommodate both misfits. The ternary eutectic displays a very good creep behaviour with strain rates very close to those obtained on other previously studied eutectics in the Al2O3–RE2O3(RE = Y, Gd, Er)–ZrO2 systems. The deformation micromechanisms are analysed by TEM in the three eutectic phases. After creep, dislocations are present in every phase. The activation of unusual slip systems (pyramidal slip in the alumina phase) shows that high local stresses can be reached. The presence of dislocation networks with low energy configurations is consistent with predominance of dislocation climb processes controlled by bulk diffusion.  相似文献   

20.
Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO · (52 ? x)SiO2 · 4P2O5  · xFe2O3 · 3Na2O (2 ≤ x ≤ 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050°C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x ≥ 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号