首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,154(1):124-137
Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air–water flow in parallel serpentine channels on cathode side of a PEM fuel cell stack by use of the commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air–water flow behaviours inside the serpentine flow channels with inlet and outlet manifolds were discussed. The results showed that there were significant variations of water distribution and pressure drop in different cells at different times. The “collecting-and-separating effect” due to the serpentine shape of the gas flow channels, the pressure drop change due to the water distribution inside the inlet and outlet manifolds were observed. Several gas flow problems of this type of parallel serpentine channels were identified and useful suggestions were given through investigating the flow patterns inside the channels and manifolds.  相似文献   

2.
Uniform flow distribution is critical to obtaining high performance in many heat and mass transfer devices. It also plays an important role in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically based models available for predicting flow distribution in individual fuel cell channels and across fuel cell stacks in PEMFCs, but little or no experimental data has been published on the actual flow rates measured in individual channels. This is mainly because of the lack of experimental techniques available to measure the instantaneous flow rates in parallel channels. In this work, a novel technique based on the entrance region pressure drop measurements is presented for monitoring fluid flow maldistribution in individual channels. The method is validated using liquid water flow in a test section with four tubes in parallel, and then applied to assess the air flow maldistribution in PEMFCs using (a) an ex-situ experimental setup simulating the two-phase flow in parallel channels, and (b) an in-situ experimental setup with an operating fuel cell. While an almost uniform air distribution is obtained for the parallel channels with an impermeable backing (plastic sheet), severe maldistribution is observed for the same channels with porous GDL backing. The maldistribution caused by the water blockage in an ex-situ test setup is further investigated and the results are verified by the high-speed images of the two-phase flow in channels. The technique has also been applied in an in-situ experimental setup to obtain the flow maldistribution under electrochemical reaction conditions in the presence of two-phase flow in the cathode side gas channels.  相似文献   

3.
Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.  相似文献   

4.
《Journal of power sources》2006,157(1):226-243
Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air–water flow in micro-parallel-channels with PEM fuel cell stack inlet and outlet manifolds for the cathode, using a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air–water flow behaviours inside the straight micro-parallel-channels with inlet and outlet manifolds were simulated and discussed. The results showed that excessive and unevenly distributed water in different single PEM fuel cells could cause blockage of airflow or uneven distribution of air along the different flow channels. It is found that for a design with straight-channels, water in the outflow manifold could be easily blocked by air/water streams from the gas flow channels; the airflow could be severely blocked even if there was only a small amount of water in the gas flow channels. Some important suggestions were made to achieve a better design.  相似文献   

5.
A novel cathode flow-field design suitable for a passive air-cooled polymer electrolyte membrane (PEM) fuel cell stack is proposed to enhance the water-retaining capability under excess dry air supply conditions. The innovative cathode flow-field is designed to supply more air to the cooling channels and further enables deceleration of the reactant air in the gas channels and acceleration of the coolant air in the cooling channels simultaneously along the air flow path. Therefore, the design facilitates the waste heat removal through the cooling channels while the water removal by the reactant air is minimized. The conceptual cathode flow-field design is validated using a three-dimensional PEM fuel cell model. The detailed simulation results clearly demonstrate that the new cathode flow-field design exhibits superior water-retaining capability compared with a conventional cathode flow-field design (parallel flow channel configuration) under typical air-cooled fuel cell operating conditions. This study provides a new strategy to design cathode flow-fields to alleviate notorious membrane dehydration and unstable performance issues in a passive air-cooled PEM fuel cell stack.  相似文献   

6.
The cathode flow-field design of a polymer electrolyte membrane (PEM) fuel cell is crucial to its performance, because it determines the distribution of reactants and the removal of liquid water from the fuel cell. In this study, the cathode flow-field of a parallel flow-field PEM fuel cell was optimized using a sub-channel. The main-channel was fed with moist air, whereas the sub-channel was fed with dry air. The influences of the sub-channel flow rate (SFR, the amount of air from the sub-channel inlet as a percentage of the total cathode flow rate) and the inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) on fuel cell performance were numerically evaluated using a three-dimensional, two-phase fuel cell model. The results indicated that the SFR and SIP had significant impacts on the distribution of the feed air, removal of liquid water, and fuel cell performance. It was found that when the SIP was located at about 30% along the length of the channel from main-channel inlet and the SFR was about 70%, the PEM fuel cell exhibited much better performance than seen with a conventional design.  相似文献   

7.
Liquid water transport in a polymer electrolyte fuel cell (PEFC) is a major issue for automotive applications. Mist flow with tiny droplets suspended in gas has been commonly assumed for channel flow while two-phase flow has been modeled in other cell components. However, experimental studies have found that two-phase flow in the channels has a profound effect on PEFC performance, stability and durability. Therefore, a complete two-phase flow model is developed in this work for PEFC including two-phase flow in both anode and cathode channels. The model is validated against experimental data of the wetted area ratio and pressure drop in the cathode side. Due to the intrusion of soft gas diffusion layer (GDL) material in the channels, flow resistance is higher in some channels than in others. The resulting flow maldistribution among PEFC channels is of great concern because non-uniform distributions of fuel and oxidizer result in non-uniform reaction rates and thus adversely affect PEFC performance and durability. The two-phase flow maldistribution among the parallel channels in an operating PEFC is explored in detail.  相似文献   

8.
《Journal of power sources》2006,162(2):1157-1164
In this work, the influences of various operating conditions including cathode inlet gas flow rate, cathode inlet humidification temperature, cell temperature, etc. on the performance of proton exchange membrane (PEM) fuel cells with conventional flow field and interdigitated flow field are experimentally studied. Experimental results show that the cell performance is enhanced with increases in cathode inlet gas flow rate, cathode humidification temperature and cell temperature. However, as cell temperature is higher than or equal to anode humidification temperature, the cell performance is deteriorated due to failure in humidification of the cell. Comparison between interdigitated flow field and conventional flow field shows that the former provides higher cell performance and remarkably reduces fuel consumption for efficient diffusion of the fuel gas to the diffuser layer. As air is used as the cathode inlet gas, PEM fuel cell with interdigitated flow field can obtain preferable limiting current density, and the optimal power is about 1.4 times as that of the cells with conventional flow field. Rib and shoulder areas are more advantageous to electrochemical reaction in interdigitated flow field; hence a large flow field area ratio degrades the better performance area and thus the cell performance. But too small flow field area ratio also deteriorates the cell performance due to the decrease in effective reaction area. Theoretically, the flow field area has an optimum value, i.e., 50.75% in this work, providing higher performance than 66.67%.  相似文献   

9.
《Energy Conversion and Management》2004,45(11-12):1883-1916
The internal transport mechanisms, which were acquired from the modeling results in Part I of this series, are discussed and compared for PEM fuel cells with a conventional flow field and an interdigitated flow field. The modeling results show that the oxygen concentration fraction in an interdigitated flow field is higher than that in a conventional flow field to increase the reaction rate, and the liquid water saturation in the former flow field is much less than that in the latter one at the cathode side to reduce the concentration overpotential largely. However, if the cathode inlet air in a PEM fuel cell with interdigitated flow field is not humidified, the performance of this fuel cell is inferior to that of a PEM fuel cell with conventional flow field because of a larger ohmic overpotential. As a result, the humidification is important for an interdigitated flow field to acquire a much better performance than a conventional flow field.  相似文献   

10.
Jixin Chen   《Journal of power sources》2010,195(4):1177-1181
In this work, a transparent assembly was self-designed and manufactured to perform ex situ experimental study on the liquid water removal characteristics in PEM fuel cell parallel flow channels. It was found that the dominant frequency of the pressure drop across the flow channels may be utilized as an effective diagnostic tool for water removal. Peaks higher than 1 Hz in dominant frequency profile indicated water droplet removals at the outlet, whereas relatively lower peaks (between 0.3 and 0.8 Hz) corresponded to water stream removals. The pressure drop signal, although correlated with the water removal at the outlet, was readily influenced by the two phase flow transport in channel, particularly at high air flow rates. The real-time visualization images were presented to show a typical water droplet removal process. The findings suggest that dominant frequency of pressure drop signal may substitute pressure drop as a more effective and reliable diagnostic tool for water removal in PEM fuel cell flow channels.  相似文献   

11.
《Journal of power sources》2006,156(2):244-252
A two-dimensional numerical model has been established to investigate the performance of the PEM fuel cells. Parameters used in the analysis include the porosity and thickness of the gas diffuser layer (GDL). Results show that increasing the porosity of gas diffusion layer causes the increasing of mass transfer of fuel and air and results in a higher reaction rate. Therefore, a better performance of the fuel cell and more fuel consumption rate are observed. It is also demonstrated that the performance of the fuel cell increases with a decrease in the thickness of gas diffusion layer. The effects of liquid water condensation and flow directions of fuel and air are also considered in this analysis. Predicted results show that the performance of the PEM fuel cell without consideration of liquid water effect is always higher than that with consideration of liquid water effect. In addition, the performance of fuel cell with co-flow pattern of fuel and air is larger than that with counter flow.  相似文献   

12.
针对高工作电流密度下,燃料电池内局部水淹导致的传质损失问题,本研究提出了一种阴极流道多进口分流进气方式。实验研究了三种典型分流口位置及分流进量对电池性能的影响。研究发现随着分流口远离阴极主进气口,电池性能呈现先上升后下降的趋势,且当分流口靠近主进气口时,增加分流量有助于电池性能提升,但分流量的增加对电池性能的提升存在一个极限值;因此,在对电池进行分流进气优化时需综合考虑分流口位置和分流量的影响。当分流口为SIP-30%且分流量为按化学当量比ξc = 0.75取值时,分流进气方式相比传统进气方式,电池的最大功率密度高出17.8%。  相似文献   

13.
The performance of a proton exchange membrane (PEM) fuel cell is directly associated to the flow channels design embedded in the bipolar plates. The flow field within a fuel cell must provide efficient mass transport with a reduced pressure drop through the flow channels in order to obtain a uniform current distribution and a high power density. In this investigation, three-dimensional fuel cell models are analyzed using computational fluid dynamics (CFD). The proposed flow fields are radially designed tree-shaped geometries that connect the center flow inlet to the perimeter of the fuel cell plate. Three flow geometries having different levels of bifurcation were investigated as flow channels for PEM fuel cells. The performance of the fuel cells is reported in polarization and power curves, and compared with that of fuel cells using conventional flow patterns such as serpentine and parallel channels. Results from the flow analysis indicate that tree-shaped flow patterns can provide a relatively low pressure drop as well as a uniform flow distribution. It was found that as the number of bifurcation levels increases, a larger active area can be utilized in order to generate higher power and current densities from the fuel cell with a negligible increase in pumping power.  相似文献   

14.
Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.  相似文献   

15.
《Journal of power sources》2006,159(1):468-477
The objective of this work is to examine the effects of humidity of reactant fuel at the inlet on the detailed gas transport and cell performance of the PEM fuel cell with baffle-blocked flow field designs. It is expected that, due to the water management problem, the effects of inlet humidity of reactant fuel gases on both anode and cathode sides on the cell performance are considerable. In addition, the effects of baffle numbers on the detailed transport phenomena of the PEM fuel cell with baffle-blocked flow field are examined. Due to the blockage effects in the presence of the baffles, more fuel gas in the flow channel can be forced into the gas diffuser layer (GDL) and catalyst layer (CL) to enhance the chemical reactions and then augment the performance of the PEMFC systems. Effect of liquid water formation on the reactant gas transport is taken into account in the numerical modeling. Predictions show that the local transport of the reactant gas, the local current density generation and the cell performance can be enhanced by the presence of the baffles. Physical interpretation for the difference in the inlet relative humidity (RH) effects at high and low operating voltages is presented. Results reveal that, at low voltage conditions, the liquid water effect is especially significant and should be considered in the modeling. The cell performance can be enhanced at a higher inlet relative humidity, by which the occurrence of the mass transport loss can be delayed with the limiting current density raised considerably.  相似文献   

16.
Polymer electrolyte membrane (PEM) fuel cells convert the chemical energy of hydrogen and oxygen directly into electrical energy. Waste heat and water are the reaction by‐products, making PEM fuel cells a promising zero‐emission power source for transportation and stationary co‐generation applications. In this study, a mathematical model of a PEM fuel cell stack is formulated. The distributions of the pressure and mass flow rate for the fuel and oxidant streams in the stack are determined with a hydraulic network analysis. Using these distributions as operating conditions, the performance of each cell in the stack is determined with a mathematical, single cell model that has been developed previously. The stack model has been applied to PEM fuel cell stacks with two common stack configurations: the U and Z stack design. The former is designed such that the reactant streams enter and exit the stack on the same end, while the latter has reactant streams entering and exiting on opposite ends. The stack analysed consists of 50 individual active cells with fully humidified H2 or reformate as fuel and humidified O2 or air as the oxidant. It is found that the average voltage of the cells in the stack is lower than the voltage of the cell operating individually, and this difference in the cell performance is significantly larger for reformate/air reactants when compared to the H2/O2 reactants. It is observed that the performance degradation for cells operating within a stack results from the unequal distribution of reactant mass flow among the cells in the stack. It is shown that strategies for performance improvement rely on obtaining a uniform reactant distribution within the stack, and include increasing stack manifold size, decreasing the number of gas flow channels per bipolar plate, and judicially varying the resistance to mass flow in the gas flow channels from cell to cell. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
《Journal of power sources》2006,162(1):286-293
In situ non-intrusive measurements of water vapor partial pressure and temperature were performed simultaneously along two gas channels on the cathode side of a PEM fuel cell using tunable diode laser absorption spectroscopy. This measurement technique developed by us was utilized earlier to make measurements in a single bipolar plate channel of a prototype PEM fuel cell. The current study examines the variation of water partial pressure and temperature near the flow inlet and outlet during operation under both steady state and time-varying load conditions. For steady-state operation, an increase in the water vapor partial pressure was observed with increasing current density due to electrochemical production of water. As expected, the measurement channel near the inlet of the flow path showed a lower water vapor partial pressure than the outlet under identical load conditions; however, the quantitative distribution of water content across the cell is important to understanding operational behavior of a PEM fuel cell. These quantitative water concentration differences between two measurement channels are reported with variations in cell load and temperature. Temperature in the gas phase remained constant due to thermal equilibrium of the fuel cell. For time varying operation, no phase lag was observed between the load and the water vapor partial pressure. The outlet measurement channel showed higher partial pressure than the inlet with larger differences for increasing cell load. The transient data matched the steady-state measurements at the same conditions. A temperature rise from the controlled value was observed at high current densities for the unsteady operation; thus, the temperature did not equilibrate on the same time scale as the water partial pressure.  相似文献   

18.
Liquid water transport is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air–water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents numerical investigations of air–water flow across an innovative GDL with catalyst layer and serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different static contact angles (hydrophilic or hydrophobic) were applied to the electrode (GDL and catalyst layer). The results showed that different wettabilities of cathode electrode could affect liquid water flow patterns significantly, thus influencing on the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown, several gas flow problems were observed, and some useful suggestions were given through investigating the flow patterns.  相似文献   

19.
Due to the limited cooling capacity of air, large-scale proton exchange membrane (PEM) fuel cell stacks are generally cooled by liquid cooling where liquid water is circulated through the flow channels of cooling plates. Effective cooling is essential for the stability, durability, and performance of PEM fuel cells. In this study, cooling plates with conventional straight channel and novel non-uniform flow channel designs are investigated and analyzed by using a three-dimensional model. The simulated results are presented in terms of pressure drop, average temperature, maximum temperature, temperature difference between the maximum temperature and minimum temperature, and the temperature uniformity index. In addition, the effects of heat flux and inlet Reynolds number on the cooling performance are studied. It is concluded that the cooling performance is significantly improved as the novel flow channel designs are applied.  相似文献   

20.
Open Pore Cellular Foam (OPCF) has received increased attention for use in Proton Exchange Membrane (PEM) fuel cells as a flow plate due to some advantages offered by the material, including better gas flow, lower pressure drop and low electrical resistance.In the present study, a novel design for an air-breathing PEM (ABPEM) fuel cell, which allows air convection from the surrounding atmosphere, using OPCF as a flow distributor has been developed. The developed fuel cell has been compared with one that uses a normal serpentine flow plate, demonstrating better performance.A comparative analysis of the performance of an ABPEM and pressurised air PEM (PAPEM) fuel cell is conducted and poor water management behaviour was observed for the ABPEM design.Thereafter, a PTFE coating has been applied to the OPCF with contact angle and electrochemical polarisation tests conducted to assess the capability of the coating to enhance the hydrophobicity and corrosion protection of metallic OPCF in the PEM fuel cell environment. The results showed that the ABPEM fuel cell with PTFE coated OPCF had a better performance than that with uncoated OPCF.Finally, OPCF was employed to build an ABPEM fuel cell stack where the performance, advantages and limitations of this stack are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号