首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shortwave-sensitive SWS1 class of vertebrate visual pigments range in lambda(max) from the violet (385-445 nm) to the ultraviolet (UV) (365-355 nm), with UV-sensitivity almost certainly ancestral. In birds, however, the UV-sensitive pigments present in a number of species have evolved secondarily from an avian violet-sensitive (VS) pigment. All avian VS pigments expressed in vitro to date encode Ser86 whereas Phe86 is present in all non-avian ultraviolet sensitive (UVS) pigments. In this paper, we show by site directed mutagenesis of avian VS pigments that Ser86 is required in an avian VS pigment to maintain violet-sensitivity and therefore underlies the evolution of avian VS pigments. The major mechanism for the evolution of avian UVS pigments from an ancestral avian VS pigment is undoubtedly a Ser90Cys substitution. However, Phe86, as found in the Blue-crowned trogon, will also short-wave shift the pigeon VS pigment into the UV whereas Ala86 and Cys86 which are also found in natural avian pigments do not generate short-wave shifts when substituted into the pigeon pigment. From available data on avian SWS1 pigments, it would appear that UVS pigments have evolved on at least 5 separate occasions and utilize 2 different mechanisms for the short-wave shift.  相似文献   

2.
Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet‐sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV‐sensitive (UVS) cones maximally sensitive at 360–370 nm. The reasons for VS–UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS‐cone vision is linked to plumage colours so that visual sensitivity and feather coloration are ‘matched’. This leads to the specific prediction that UVS‐cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS‐bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS‐cone vision and plumage colour evolution. Instead, we suggest that UVS‐cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones.  相似文献   

3.
Long-term exposure to ultraviolet (UV) light generates substantial damage, and in mammals, visual sensitivity to UV is restricted to short-lived diurnal rodents and certain marsupials. In humans, the cornea and lens absorb all UV-A and most of the terrestrial UV-B radiation, preventing the reactive and damaging shorter wavelengths from reaching the retina. This is not the case in certain species of long-lived diurnal birds, which possess UV-sensitive (UVS) visual pigments, maximally sensitive below 400 nm. The Order Psittaciformes contains some of the longest lived bird species, and the two species examined so far have been shown to possess UVS pigments. The objective of this study was to investigate the prevalence of UVS pigments across long-lived parrots, macaws and cockatoos, and therefore assess whether they need to cope with the accumulated effects of exposure to UV-A and UV-B over a long period of time. Sequences from the SWS1 opsin gene revealed that all 14 species investigated possess a key substitution that has been shown to determine a UVS pigment. Furthermore, in vitro regeneration data, and lens transparency, corroborate the molecular findings of UV sensitivity. Our findings thus support the claim that the Psittaciformes are the only avian Order in which UVS pigments are ubiquitous, and indicate that these long-lived birds have UV sensitivity, despite the risks of photodamage.  相似文献   

4.
Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467–500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts.  相似文献   

5.
Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; λ ≤ 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315–400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (λ ≥ 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with λ > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of λmax = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia.  相似文献   

6.
The peak sensitivities (λ(max)) of the short-wavelength-sensitive-1 (SWS1) pigments in mammals range from the ultraviolet (UV) (360-400 nm) to the violet (400-450 nm) regions of the spectrum. In most cases, a UV or violet peak is determined by the residue present at site 86, with Phe conferring UV sensitivity (UVS) and either Ser, Tyr or Val causing a shift to violet wavelengths. In primates, however, the tuning mechanism of violet-sensitive (VS) pigments would appear to differ. In this study, we examine the tuning mechanisms of prosimian SWS1 pigments. One species, the aye-aye, possesses a pigment with Phe86 but in vitro spectral analysis reveals a VS rather than a UVS pigment. Other residues (Cys, Ser and Val) at site 86 in prosimians also gave VS pigments. Substitution at site 86 is not, therefore, the primary mechanism for the tuning of VS pigments in primates, and phylogenetic analysis indicates that substitutions at site 86 have occurred at least five times in primate evolution. The sole potential tuning site that is conserved in all primate VS pigments is Pro93, which when substituted by Thr (as found in mammalian UVS pigments) in the aye-aye pigment shifted the peak absorbance into the UV region with a λ(max) value at 371 nm. We, therefore, conclude that the tuning of VS pigments in primates depends on Pro93, not Tyr86 as in other mammals. However, it remains uncertain whether the initial event that gave rise to the VS pigment in the ancestral primate was achieved by a Thr93Pro or a Phe86Tyr substitution.  相似文献   

7.
Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows the shortest lambda(max) values with peaks in different species in either the violet (390-435 nm) or ultraviolet (around 365 nm) regions of the spectrum. Phylogenetic evidence indicates that the ancestral pigment was probably UV-sensitive (UVS) and that the shifts between violet and UV have occurred many times during evolution. This is supported by the different mechanisms for these shifts in different species. All visual pigments possess a chromophore linked via a Schiff base to a Lys residue in opsin protein. In violet-sensitive (VS) pigments, the Schiff base is protonated whereas in UVS pigments, it is almost certainly unprotonated. The generation of VS from ancestral UVS pigments most likely involved amino acid substitutions in the opsin protein that serve to stabilise protonation. The key residues in the opsin protein for this are at sites 86 and 90 that are adjacent to the Schiff base and the counterion at Glu113. In this review, the different molecular mechanisms for the UV or violet shifts are presented and discussed in the context of the structural model of bovine rhodopsin.  相似文献   

8.
Gulls (Laridae excluding Sternidae) appear to be the only shorebirds (Charadriiformes) that have a short wavelength sensitive type 1 (SWS1) cone pigment opsin tuned to ultraviolet (UV) instead of violet. However, the apparent UV-sensitivity has only been inferred indirectly, via the interpretation that the presence of cysteine at the key amino acid position 90 in the SWS1 opsin confers UV sensitivity. Unless the cornea and the lens efficiently transmit UV to the retina, gulls might in effect be similar to violet-sensitive birds in spectral sensitivity even if they have an ultraviolet sensitive (UVS) SWS1 visual pigment. We report that the spectral transmission of the cornea and lens of great black-backed Larus marinus and herring gulls L. argentatus allow UV-sensitivity, having a λT0.5 value, 344 nm, similar to the ocular media of UV sensitive birds. By molecular sequencing of the second α-helical transmembrane region of the SWS1 opsin gene we could also infer that 15 herring gulls and 16 yellow-legged gulls L. michahellis, all base-pair identical, are genetically UV-sensitive.  相似文献   

9.
Recent evidence that absorption maxima (λRmin) expressed by colorful plumage pigments align to diagnostic cone sensitivities of affiliated visual systems suggests that birds employ specialized signals in relation to their color vision. However, these studies compared different pigments and clades for the violet (porphyrins in non-passerines) and ultraviolet (carotenoids in passerines) sensitive system, which confounds chemistry and phylogeny with tuning patterns. To test whether signal alignments to violet (VS) and ultraviolet (UVS) systems transcend confounding factors, parallel analyses were conducted for a diversity of near-passerines, a group in which plumage carotenoids occur in taxa with either visual system. Conventional and phylogenetically informed analyses confirmed earlier findings: short wavelength absorbing (yellow carotenoid) pigments aligned λRmin with the violet-sensitive (V) cone of VS species but with the short wavelength-sensitive (S) cone of UVS species, whereas long wavelength-absorbing (red carotenoid) pigments aligned only with the S cone of VS species. More extensive variation among VS yellow carotenoids produced λRmin alignments to cone sensitivities that differed at shorter (peaks) versus longer (overlaps) wavelengths. Ancestral trait reconstructions indicated that signals evolved to match pre-existing VS systems, but did not resolve scenarios for UVS systems. Regardless of historical details, alignments expressed a higher-level pattern in which λRmin values were blue-shifted for yellow and red carotenoids in VS compared to UVS species, a pattern opposite that expressed by receptor sensitivities between systems. Thus, generalized functional designs attributed to avian color vision allow for specialized visual communication through the development of chromatic signals suited to each perceptual system.  相似文献   

10.
Summary The absorption maxima ( max) of the visual pigments in the ommatidia ofNotonecta glauca were found by measuring the difference spectra of single rhabdomeres after alternating illumination with two different adaptation wavelengths. All the peripheral rhabdomeres contain a pigment with an extinction maximum at 560 nm. This pigment is sensitive to red light up to wavelengths > 700 nm. In a given ommatidium in the dorsal region of the eye, the two central rhabdomeres both contain one of two pigments, either a pigment with an absorption maximum in the UV, at 345 nm, or — in neighboring rhabdoms — a pigment with an absorption maximum at 445 nm. In the ventral part of the eye only the pigment absorbing maximally in the UV was found in the central rhabdomeres. The spectral absorption properties of various types of screening-pigment granules were measured.  相似文献   

11.
Single and Multiple Visual Systems in Arthropods   总被引:3,自引:2,他引:1  
Extraction of two visual pigments from crayfish eyes prompted an electrophysiological examination of the role of visual pigments in the compound eyes of six arthropods. The intact animals were used; in crayfishes isolated eyestalks also. Thresholds were measured in terms of the absolute or relative numbers of photons per flash at various wavelengths needed to evoke a constant amplitude of electroretinogram, usually 50 µv. Two species of crayfish, as well as the green crab, possess blue- and red-sensitive receptors apparently arranged for color discrimination. In the northern crayfish, Orconectes virilis, the spectral sensitivity of the dark-adapted eye is maximal at about 550 mµ, and on adaptation to bright red or blue lights breaks into two functions with λmax respectively at about 435 and 565 mµ, apparently emanating from different receptors. The swamp crayfish, Procambarus clarkii, displays a maximum sensitivity when dark-adapted at about 570 mµ, that breaks on color adaptation into blue- and red-sensitive functions with λmax about 450 and 575 mµ, again involving different receptors. Similarly the green crab, Carcinides maenas, presents a dark-adapted sensitivity maximal at about 510 mµ that divides on color adaptation into sensitivity curves maximal near 425 and 565 mµ. Each of these organisms thus possesses an apparatus adequate for at least two-color vision, resembling that of human green-blinds (deuteranopes). The visual pigments of the red-sensitive systems have been extracted from the crayfish eyes. The horse-shoe crab, Limulus, and the lobster each possesses a single visual system, with λmax respectively at 520 and 525 mµ. Each of these is invariant with color adaptation. In each case the visual pigment had already been identified in extracts. The spider crab, Libinia emarginata, presents another variation. It possesses two visual systems apparently differentiated, not for color discrimination but for use in dim and bright light, like vertebrate rods and cones. The spectral sensitivity of the dark-adapted eye is maximal at about 490 mµ and on light adaptation, whether to blue, red, or white light, is displaced toward shorter wavelengths in what is essentially a reverse Purkinje shift. In all these animals dark adaptation appears to involve two phases: a rapid, hyperbolic fall of log threshold associated probably with visual pigment regeneration, followed by a slow, almost linear fall of log threshold that may be associated with pigment migration.  相似文献   

12.
Diurnal birds belong to one of two classes of colour vision. These are distinguished by the maximum absorbance wavelengths of the SWS1 visual pigment sensitive to violet (VS) and ultraviolet (UVS). Shifts between the classes have been rare events during avian evolution. Gulls (Laridae) are the only shorebirds (Charadriiformes) previously reported to have the UVS type of opsin, but too few species have been sampled to infer that gulls are unique among shorebirds or that Laridae is monomorphic for this trait. We have sequenced the SWS1 opsin gene in a broader sample of species. We confirm that cysteine in the key amino acid position 90, characteristic of the UVS class, has been conserved throughout gull evolution but also that the terns Anous minutus, A. tenuirostris and Gygis alba, and the skimmer Rynchops niger carry this trait. Terns, excluding Anous and Gygis, share the VS conferring serine in position 90 with other shorebirds but it is translated from a codon more similar to that found in UVS shorebirds. The most parsimonious interpretation of these findings, based on a molecular gene tree, is a single VS to UVS shift and a subsequent reversal in one lineage.  相似文献   

13.
Summary This study reports photopic spectral sensitivity curves (351–709 nm) for four individual roach,Rutilus rutilus, determined by two choice appetitive training. All four curves show four sensitivity maxima at 361–398 nm, 421–448 nm, 501–544 nm and 634–666 nm which are related to the four known roach photopic visual pigments (Avery et al. 1982). The overall shape of the curves at long wavelengths indicates inhibitory interactions between the red and green cone mechanisms. That the high behavioural sensitivity in the UV is caused by a specific ultraviolet visual pigment and is not due to aberrant stimulation of the other cone types is shown by the redetermination of spectral sensitivity at short wavelengths (351–501 nm) following the selective bleaching of the three longer wavelength visual pigments. This depresses the blue sensitivity to a greater degree than the relatively unaffected UV sensitivity maximum. Spectral transmission data from two corneas and four lenses show that they transmit considerable amounts of light in the near UV.  相似文献   

14.
Rhodopsin of the Larval Mosquito   总被引:6,自引:6,他引:0       下载免费PDF全文
Larvae of the mosquito Aedes aegypti have a cluster of four ocelli on each side of the head. The visual pigment of each ocellus of mosquitoes reared in darkness was characterized by microspectrophotometry, and found to be the same. Larval mosquito rhodopsin (λmax = 515 nm) upon short irradiation bleaches to a stable photoequilibrium with metarhodopsin (λmax = 480 nm). On long irradiation of glutaraldehyde-fixed tissues or in the presence of potassium borohydride, bleaching goes further, and potassium borohydride reduces the product, retinal, to retinol (vitamin A1). In the presence of hydroxylamine, the rhodopsin bleaches rapidly, with conversion of the chromophore to retinaldehyde oxime (λmax about 365 nm).  相似文献   

15.
Relatively little is known about the physical structure and ecological adaptations of elasmobranch sensory systems. In particular, elasmobranch vision has been poorly studied compared to the other senses. Virtually nothing is known about whether elasmobranchs possess multiple cone types, and therefore the potential for colour vision, or how the spectral tuning of their visual pigments is adapted to their different lifestyles. In this study, we measured the spectral absorption of the rod and cone visual pigments of the blue-spotted maskray, Dasyatis kuhlii, using microspectrophotometry. D. kuhlii possesses a rod visual pigment with a wavelength of maximum absorbance (λmax) at 497 nm and three spectrally distinct cone types with λmax values at 476, 498 and 552 nm. Measurements of the spectral transmittance of the ocular media reveal that wavelengths below 380 nm do not reach the retina, indicating that D. kuhlii is relatively insensitive to ultraviolet radiation. Topographic analysis of retinal ganglion cell distribution reveals an area of increased neuronal density in the dorsal retina. Based on peak cell densities and using measurements of lens focal length made using laser ray tracing and sections of frozen eyes, the estimated spatial resolving power of D. kuhlii is 4.10 cycles per degree.  相似文献   

16.
Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (max) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (cut) of their respective C-, Y- and R-type oil droplets can be predicted from the max of the ultraviolet- (UVS)/violet- (VS) sensitive visual pigment.  相似文献   

17.
Retinal visual and screening pigments of two populations (one marine and the other freshwater) of the opossum shrimp Mysis relicta Lovén (Crustacea, Mysidacea), which have different ocular tolerance to light, was investigated. Visual pigments were extracted by detergent and their bleaching difference spectra were determined. The difference between the visual pigment absorption maximum of the two populations correlated with their difference in spectral sensitivity. Using buffer or neutral methanol, a yellow pigment was extracted which had absorption maxima at 440 nm and 325 nm and bright blue fluorescence (λmax 415 nm). A screening pigment (ommochrome) with maximum at 525 nm was extracted by acid methanol, and was probably related to the group of ommines. The eyes of the lake population had 1.8–2.7 times less of this pigment than the eyes of the sea population. The sea population is more resistant to photo-induced accumulation of thiobarbituric acid-reactive substances in eye tissues. This resistance may be due to the higher ommochrome content. Accepted: 8 December 1998  相似文献   

18.
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (max: 357–382 nm), blue (max: 431–446 nm), green (max: 490–553 nm) and red (max: 548–607 nm) parts of the spectrum, and a rod visual pigment with max: 504–531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment max than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment max during smoltification.  相似文献   

19.
Action Spectra and Adaptation Properties of Carp Photoreceptors   总被引:11,自引:8,他引:3       下载免费PDF全文
The mass photoreceptor response of the isolated carp retina was studied after immersing the tissue in aspartate-Ringer solution. Two electro-retinogram components were isolated by differential depth recording: a fast cornea-negative wave, arising in the receptor layer, and a slow, cornea-negative wave arising at some level proximal to the photoreceptors. Only the fast component was investigated further. In complete dark adaptation, its action spectrum peaked near 540 nm and indicated input from both porphyropsin-containing rods (λmax ≈ 525 nm) and cones with longer wavelength sensitivity. Under photopic conditions a broad action spectrum, λmax ≈ 580 nm was seen. In the presence of chromatic backgrounds, the photopic curve could be fractionated into three components whose action spectra agreed reasonably well with the spectral characteristics of blue, green, and red cone pigments of the goldfish. In parallel studies, the carp rod pigment was studied in situ by transmission densitometry. The reduction in optical density after a full bleach averaged 0.28 at its λmax 525 nm. In the isolated retina no regeneration of rod pigment occurred within 2 h after bleaching. The bleaching power of background fields used in adaptation experiments was determined directly. Both rods and cones generated increment threshold functions with slopes of +1 on log-log coordinates over a 3–4 log range of background intensities. Background fields which bleached less than 0.5% rod pigment nevertheless diminished photoreceptor sensitivity. The degree and rate of recovery of receptor sensitivity after exposure to a background field was a function of the total flux (I x t) of the field. Rod saturation, i.e. the abolition of rod voltages, occurred after ≈12% of rod pigment was bleached. In light-adapted retinas bathed in normal Ringer solution, a small test flash elicited a larger response in the presence of an annular background field than when it fell upon a dark retina. The enhancement was not observed in aspartate-treated retinas.  相似文献   

20.
The induction of autofluorescence of melanins by UV radiation (330–380nm) and near UV (400–440nm) light (jointly called UV light) was studied in tissue sections using three commercially available mounting media. Only Immu-Mount (Shandon) was found suitable for this purpose. UV irradiation of melanins in sections mounted in this medium induced strong yellow auto-fluorescence irrespective of the type of the polymer (eumelanin, neuromelanin, pheomelanin and ochronotic pigment). The phenomenon of auto-fluorescence induction was also observed with isolated natural and in vitro prepared melanins. It was inhibited by anhydrous conditions, sodium azide and catalase. In parallel experiments, rapid degradation of melanins with an intermediate fluorescent stage was achieved in UV-irradiated sections mounted in media artificially enriched with hydrogen peroxide, or directly in aqueous solutions of H2O2, Na2O2 or HIO4. Oxidations not associated with UV light led to nonfluorogenic breakdown of melanins. These observations indicate that the common mechanism may be an oxidative attack resulting from a concerted action of hydrogen peroxide and UV light leading, through strongly fluorescent intermediates, to a complete bleaching and oxidative breakdown of melanin and melanin-like polymers. Reactive oxygen species (including ozone) are considered to be important reactants in these experiments. Lipopigments differ from melanin-like pigments by their primary auto-fluorescence, which mostly faded during continuous prolonged irradiation. The only regular exception was melanosis coli pigment, the auto-fluorescence of which was considerably augmented by UV irradiation. Our results demonstrate a novel type of fluorogen in auto-fluorescent pigment histochemistry. The implications of the results are discussed especially in the light of the possible presence of melanin-based fluorogens in lipopigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号