首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of cadmium oxide were thermally deposited on glass substrates at partial pressures of oxygen, pO2 in the range 1.33×10−2 to 0.133 Pa at a substrate temperature of 160 °C. Energy dispersive analysis of X-ray fluorescence (EDAX) revealed that the CdO films deposited at pO2 value of 4.00×10−2 Pa were nearly stoichiometric. X-ray diffractometry (XRD) confirmed the polycrystalline nature of the film structure. All the films showed an fcc structure of the NaCl-type, as the dominant phase. The films exhibited preferred orientation along the (1 1 1) diffraction plane. The texture coefficients calculated for the various planes at different oxygen partial pressures (pO2) indicated that the maximum preferred orientation of the films occurred along the (1 1 1) plane at an oxygen partial pressure of 4.00×10−2 Pa. This was interpreted in terms of oxygen chemisorption and desorption processes. The lattice parameters determined from the diffraction peaks were in the range 4.655–4.686 Å. The average lattice parameter a0 found by extrapolation using the Nelson–Riley function was 4.696 Å. Both the lattice parameter and the crystallite size were found to increase with increased partial pressure of oxygen. On the other hand, the strain and dislocation density were found to decrease as the partial pressure of oxygen was raised. A maximum (80%) in the optical transmittance at λ=600 nm and minimum in the electrical resistivity (9.1×10−4 Ω cm) of the films occurred at an optimum partial pressure of oxygen of 4.00×10−2 Pa. The results are discussed.  相似文献   

2.
Sb-doped SnO2 (ATO) nanoparticles was synthesized at different temperatures by the solvothermal route, starting with SnCl4·5H2O and SbCl3. The samples were characterized by means of XRD, Mössbauer spectroscopy and TEM, the specific surface area and resistivity of samples were examined, respectively. Results showed that the mean crystallite size and resistivity of the samples increased and decreased, respectively, with the increase of the solvothermal temperature. The lowest resistivity of the samples was found at 160 °C, and Mössbauer spectroscopy showed that the content of Sb5+ in these samples was the highest. TEM showed that the powder was monodispersed in the range of 8–15 nm particles size. Sb-doped SnO2 thin films were prepared by spin coating process on corning 7059 glass using the ethanol suspensions of Sb-doped SnO2 nanoparticles and the Hall mobility μ, the carrier concentration n, the sheet resistance R and the transmission spectra of the films were measured and investigated.  相似文献   

3.
The results of doping influence on thermal stability of the SnO2 film morphology are presented in this article. The SnO2 films doped by Fe, Cu, Ni, Co (16 at.%) were deposited by spray pyrolysis from 0.2 M SnCl4–water solution at Tpyr 350–450 °C. The annealing at 850–1030 °C was carried out in the atmosphere of the air. The change of such parameters as film morphology, the grain size, texture and the intensity of X-ray diffraction (XRD) peaks have been controlled. For structural analysis of tested films we have been using X-ray diffraction, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) techniques. It was established that the doping does not improve thermal stability of both film morphology and the grain size. It was made a conclusion that the increased contents of the fine dispersion phase of tin oxide in the doped metal oxide films, and the coalescence of this phase during thermal treatment are the main factors, responsible for observed changes in the morphology of the doped SnO2 films.  相似文献   

4.
《Materials Research Bulletin》2013,48(11):4804-4810
Superhydrophobic Sn/SnOx (x = 1 and 2) films were facilely fabricated by surface self-passivation of three-dimensional (3D) hierarchical porous dendritic Sn while exposed to the air. The porous dendritic Sn was obtained rapidly by electrodeposition accompanying release of hydrogen bubbles. Influence of electrodeposition parameters on the surface morphology and wettabillity has been investigated in detail, including deposition potentials, deposition times and electrolyte concentrations. The maximum contact angle reached to 165° on the porous dendritic Sn/SnOx film electrodeposited in a solution of 60 mM SnCl2 and 1.5 M H2SO4 under −1.7 V for 20 s. Both the hierarchical micro-nanostructures and the spontaneously formed ultrathin surface passivation layer of Sn oxides endow the prepared Sn/SnOx surface with excellent inherent superhydrophobicity without further surface modification.  相似文献   

5.
The Judd–Ofelt theory has been applied to analyze absorption spectra of Ho3+ ion in HoAl3(BO3)4 measured in spectral range 300–700 nm at room temperature. The Judd–Ofelt spectroscopic parameters have been determined as: Ω2 = 18.87 × 10−20 cm2, Ω4 = 17.04 × 10−20 cm2, Ω6 = 9.21 × 10−20 cm2. These parameters have been used to calculate radiative lifetimes and branching ratios of the luminescence manifolds. Three luminescent bands were found in the spectral range 450–700 nm ascribed to transitions from the 5F5, (5F4, 5S2) and 3K8 states to the ground state 5I8. Experimental intensities of these luminescence transitions were compared with those calculated by using Judd–Ofelt theory and the system of kinetic equations for populations of starting luminescing states. Probabilities of radiativeless transitions were evaluated from this comparison.  相似文献   

6.
H. Xie  F.L. Ng  X.T. Zeng 《Thin solid films》2009,517(17):5066-5069
Spectroscopic ellipsometry (SE) was employed to realize in-situ monitoring and the determination of thermo-optic coefficients (TOC) of thin films by integrating a temperature controlled hot stage to the ellipsometer and applying the empirical relationship of Cauchy between the refractive index and wavelength in the data analysis. Magnetron sputtered titanium oxide thin films of 350 nm thick both as-deposited and post-deposition annealed were prepared on silicon wafers for this investigation. Results of ellipsometric analysis show that as-deposited TiO2 films have a negative TOC of ? 1.21 × 10? 4 K? 1 at 630 nm over the test temperature range 304–378 K. The post-deposition annealing at 923 K for 2 hours leads an increase in film refractive index to 2.29 from 2.17 for as-deposited TiO2 films, and an enhancement in TOC up to ? 2.14 × 10? 4 K? 1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) cross-sectional analysis were performed for film structure characterization.  相似文献   

7.
Tungsten based phosphate glasses are interesting non-crystalline materials, commonly known for photochromic and electrochromic effects, but also promising hosts for luminescent trivalent rare earth ions. Despite very few reports in the literature, association of the host́s functionalities with the efficient emissions of the dopant ions in the visible and near-infrared spectra could lead to novel applications. This work reports the preparation and characterization of glasses with the new composition 4(Sb2O3)96−x(50WO3 50NaPO3)xEu2O3 where x = 0, 0.1, 0.25, 0.5 and 1.0 mol%, obtained by the melt quenching technique. The glasses present large density (∼4.6 g cm−3), high glass transition temperature (∼480 °C) and high thermal stability against crystallization. Upon excitation at 464 nm, the characteristic emissions of Eu3+ ions in the red spectral region are observed with high intensity. The Judd–Ofelt intensity parameters Ω2 = 6.86 × 10−20, Ω4 = 3.22 × 10−20 and Ω6 = 8.2 × 10−20 cm2 were calculated from the emission spectra and found to be higher than those reported for other phosphate glass compositions. An average excited state lifetime value of 1.2 ms, was determined by fitting the luminescence decay curves with single exponential functions and it is comparable or higher than those of other oxide glasses.  相似文献   

8.
Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO2. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 106 while the device mobility values were increased from 2.31 cm2/V s to 6.24 cm2/V s upon increasing the deposition temperature of the tin oxide films.  相似文献   

9.
《Materials Research Bulletin》2013,48(4):1545-1552
For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 °C via vapor–liquid–solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2–4 μm and diameter of 20–60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 × 10−4 mbar suggested that a temperature equal to or greater than 450 °C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 μW/cm2 UV lamp (330 nm) intensity on the photo detector..  相似文献   

10.
The controlled precipitation method allowed to the synthesis of SnO2 with advantageous specific properties, such as size and shape employing an aqueous SnCl2·2H2O solution as precursor. Through XRD analyses, the optimum pH value of the solution that yielded the desired product was found to be 6.25. After a thermal treatment at 600 °C, the final powder presented an average particle size below 50 nm with a surface area of 19 m2 g−1 and a large reactivity. The evolution of the most important functional groups during the steps involved in this synthesis route is explained in view of the results obtained with FTIR and XRD. A thorough discussion on the different intermediates involved in the whole process is presented on the basis of hydrolysis and condensation reactions. The conclusions are supported with a complete characterization through differential and gravimetric thermal analysis (DTA/TGA), electron microscopies (SEM/TEM) and surface area determinations (BET).  相似文献   

11.
《Thin solid films》2006,494(1-2):42-46
Amorphous Zn–Sn–O (ZTO) thin films with relative Zn contents (= [at.% Zn]/([at.% Zn] + [at.% Sn])) of 0, 0.08 and 0.27 were fabricated by co-sputtering of SnO2 and ZnO targets at room temperature. Changes in structural, electrical and optical properties together with electron transport properties were examined upon post-annealing treatment in the temperature range from 200 to 600 °C in vacuum and in air. Characterization by XRD showed that an amorphous ZTO thin film crystallized at higher temperatures with increasing Zn content. Crystallized ZTO films with a relative Zn content of 0.27 might not contain a single SnO2 phase which is observed in the films of the other compositions. Amorphous ZTO films showed decreasing electrical resistivities with increasing annealing temperature, having a minimum value of 1 × 10 3 Ω cm. Upon crystallization, the resistivities increased drastically, which was attributed to poor crystallinity of the crystallized films. All the ZTO films were found to be degenerate semiconductors with non-parabolic conduction bands having effective masses varying from 0.15 to 0.3 in the carrier concentration range of 6 × 1018 to 2 × 1020 cm 3. As for a ZTO film with a relative Zn content of 0.27, the degree of non-parabolicity was much lower compared with films of the other compositions, leading to a relatively stable mobility over a wide range of carrier concentration.  相似文献   

12.
TiN coating on Y-α-sialon was accomplished by depositing TiO2 on their particle surfaces through controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 and subsequent nitridation with NH3 gas at 1000 °C. TiN particles covering Y-α-sialon were about 20 nm in size. Spark plasma sintering (SPS) of TiN/Y-α-sialon particles produced composite ceramics with continuous TiN networks at 1400 °C, but with TiN grains isolated in elongated β-sialon grains at 1600 °C. The relative density and Vickers hardness of TiN/sialon ceramics SPSed at 1400–1600 °C containing 25 vol.% TiN were measured. The electrical resistivity was in a wide range of 10−4 to 100 Ω cm for the ceramics sintered at 1400 °C, but lowered to the order of magnitude of 10−1 and 105 Ω cm at higher temperatures ≥1500 °C. It was found that the complete transition to β-sialon increased the resistivity to 103 to 105 Ω cm, due to breaking up continuous TiN layers by elongated β-sialon grains.  相似文献   

13.
《Materials Letters》2006,60(21-22):2611-2616
Cyclic voltammetry was used to investigate the electrochemical behaviors of Mg(II), Ce(III) and Co(II) in 3.00 mol L 1 urea–DMSO (dimethylsulfoxide). The electrode processes of Mg(II), Ce(III) and Co(II) reducing on Pt electrodes were irreversible steps. The transfer coefficient of Mg(II), Ce(III) and Co(II) in 3.00 mol L 1 urea–DMSO system was calculated as 0.07, 0.05 and 0.05 at 298.15 K, respectively. The diffusion coefficient of Mg(II), Ce(III) and Co(II) in 3.00 mol L 1 urea–DMSO system was calculated as 2.27 × 10 10, 1.77 × 10 10 and 3.16 × 10 10 m2 s 1 at 298.15 K, respectively. The MgCeCo alloy thin films with smooth, uniform and metallic luster were obtained on Cu substrates by cyclic electrodeposition in 0.01 mol L 1 Mg(ClO4)2–0.01 mol·L 1 Ce(CH3SO3)3−0.01 mol L 1 CoCl2–3.00 mol L 1 urea–DMSO system. The potential sweep rate was found to be important with respect to the adhesion of the thin films.  相似文献   

14.
《Thin solid films》2006,515(2):509-512
Silicon nitride (Si3N4) is an important insulator, frequently used in VLSI technology and for encapsulation. Conventionally it is prepared by low pressure and plasma-enhanced chemical vapour deposition, but may also be successfully deposited by RF sputtering. In the present work the sputtering process was characterised, together with some measurements on the high-field DC electrical properties in sandwich samples with Au electrodes. Films were Ar-sputtered using a Si3N4 sputtering target at gas pressures up to 2.12 Pa and RF discharge powers of 60–200 W. The deposition rate R was in the range 0.03–0.19 nm s 1 and was directly proportional to the discharge power and varied linearly with the pressure. Au electrodes formed sandwich structures with thicknesses of 50 nm–1 μm. Conductivity was essentially ohmic below 300 nm, while for the thicker films space-charge limited conductivity, dominated by an exponential distribution of traps, was observed. A mobility value of μ = 2.89 × 10 6 m2 V 1 s 1 was derived from temperature measurements, and further analysis of the JV data indicated a thermally generated electron concentration of 3.23 × 1019 m 3 and a trap concentration of 1.57 × 1024 m 3. It was concluded that this method is suitable for the deposition of thin films, which have similar electrical properties to those prepared by chemical vapour deposition methods.  相似文献   

15.
Polycrystalline samples of BaV13O18 and SrV13O18 were prepared by solid-state reaction of BaCO3, SrCO3, V2O5 and V at 1773–2073 K in flowing Ar. The crystal structures of BaV13O18 (R-3, ah=12.6293(10) Å, ch=7.0121(4) Å) and SrV13O18 (ah=12.5491(7) Å, ch=6.9878(3) Å) were refined by the Rietveld method using X-ray diffraction data. BaV13O18 exhibited semiconducting behavior with electrical resistivity from 5.8×10−3 to 2.7×10−3 Ω cm at 100–300 K. Electrical resistivity of SrV13O18 ranged from 1.5×10−3 to 1.8×10−3 Ω cm, and it increased slightly up to around 250 K and decreased above 250 K with increasing temperature. Negative Seebeck coefficients of both compounds at 100–300 K indicated that electron was the dominant carrier. BaV13O18 and SrV13O18 showed paramagnetism with the effective magnetic moment of 0.11μB and 0.15μB, respectively, at 10–100 K.  相似文献   

16.
Low thermal conductivity is one of the key requirements for thermal barrier coating materials. From the consideration of crystal structure and ion radius, La3 + Doped Yb2Sn2O7 ceramics with pyrochlore crystal structures were synthesized by sol–gel method as candidates of thermal barrier materials in aero-engines. As La3 + and Yb3 + ions have the largest radius difference in lanthanoid group, La3 + ions were expected to produce significant disorders by replacing Yb3 + ions in cation layers of Yb2Sn2O7. Both experimental and computational phase analyses were carried out, and good agreement had been obtained. The lattice constants of solid solution (LaxYb1  x)2Sn2O7 (x = 0.3, 0.5, 0.7) increased linearly when the content of La3 + was increased. The thermal properties (thermal conductivity and coefficients of thermal expansion) of the synthesized materials had been compared with traditional 8 wt.% yttria stabilized zirconia (8YSZ) and La2Zr2O7 (LZ). It was found that La3 + Doped Yb2Sn2O7 exhibited lower thermal conductivities than un-doped stannates. Amongst all compositions studied, (La0.5Yb0.5)2Sn2O7 exhibited the lowest thermal conductivity (0.851 W·m 1·K 1 at room temperature), which was much lower than that of 8YSZ (1.353 W·m 1·K 1), and possessed a high coefficient of thermal expansion (CTE), 13.530 × 10 6 K 1 at 950 °C.  相似文献   

17.
《Thin solid films》2006,515(2):567-570
It has been reported that a small amount of hydrogen in argon plasma induces an increase in the crystallite size of the as-deposited films. In addition, control of the hydrogen partial pressure is expected to improve the carrier mobility by increasing the crystallinity of the film (larger crystal size and lower grain boundary effects). Al doped ZnO (AZO) films were deposited by co-CFUBM (closed field unbalanced magnetron) sputtering. The ultimate aim was to deposit transparent films on a polymer substrate with a low electrical resistivity. Therefore, the structural, optical and electrical properties of AZO films were investigated as a function of the hydrogen partial pressure. A minimum resistivity and maximum transparency of 8 × 10 4 Ω cm and 88.1% were obtained, respectively. A critical PH2 was expected to improve the carrier mobility by increasing the crystallinity of the film. However, above this value, conductivity reduced due to the formations of oxides such as ZnO and Al2O3 in the AZO films.  相似文献   

18.
《Materials Letters》2006,60(13-14):1617-1621
Cuprous oxide (Cu2O) thin films were deposited by dc reactive magnetron sputtering technique onto glass substrates by sputtering of pure copper target in a mixture of argon and oxygen gases under various oxygen partial pressures in the range 8 × 10 3–1 × 10 1 Pa at a constant substrate temperature of 473 K and a sputtering pressure of 4 Pa. The dependence of cathode potential on the oxygen partial pressure was explained in terms of cathode poisoning effect. The influence of oxygen partial pressure on the structural and optical properties of Cu2O films was systematically studied. Single phase films of Cu2O were obtained at an oxygen partial pressure of 2 × 10 2 Pa. The films formed at an oxygen partial pressure of 2 × 10 2 Pa were polycrystalline with cubic structure and exhibited an optical band gap of 2.04 eV.  相似文献   

19.
Stress–strain characteristics of the binary Sn–3.3 wt.% Ag and the tertiary Sn–3.3 wt.% Ag–1 wt.% Zn solder alloys were investigated at various strain rates (SR, ε·) from 2.6 × 10 4 to 1.0 × 10 2 s 1 and deformation temperatures from 300 to 373 K. Addition of 1 wt.% Zn to the binary alloy increased the yield stress σy and the ultimate tensile stress σUTS while a decrease of ductility (total elongation εT) was observed. Increasing the strain rate (ε·) increased both σy and σUTS according to the power law σ = C ε·m. A normal decrease of εT with strain rate was observed according to an empirical equation of the form εT = A exp (− λε·); A and λ are constants. Increasing the deformation temperature decreased both σy and σUTS in both alloys, and decreased the total elongation εT in the Zn-free binary alloy, whereas εT was increased in the Zn-containing alloy. The activation energy was determined as 41 and 20 kJ mol 1 for these alloys, respectively. The results obtained were interpreted in terms of the variation of the internal microstructure in both alloys. The internal microstructural variations in the present study were evaluated by optical microscopy, electron microscopy and X-ray diffraction. The results show the importance of Zn addition in enhancing the mechanical strength of the Sn–3.3 wt.% Ag base alloy.  相似文献   

20.
《Materials Letters》2006,60(17-18):2110-2114
Nanoparticle zinc phosphate dihydrate was prepared by solid-state reaction at ambient temperature from Na3PO4·12H2O and ZnSO4·7H2O, and characterized by X-ray, Raman, FT-IR spectra and TEM. Thermochemical study was performed by a RD496-III microcalorimeter at 298.15 K. The results reveal that the obtained product is Zn3(PO4)2·2H2O with spherical shape and particle size is between 40–50 nm. The standard enthalpy value for above reaction is calculated as − 45.793 kJ·mol 1. The standard enthalpy of formation for zinc phosphate dihydrate is recommended as − 3788.607 kJ·mol 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号