首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叙述了以太阳能相变蓄热装置蓄热,且与蒸发器进口处换热的辅助热泵系统,用20号蓄热专用石蜡,通过板式换热器与蒸发器进水管进行热量传递的实验。指出,利用太阳能集热器在白天升高蒸发器侧的温度提高热泵效率,利用储存在蓄热装置中的热量夜晚可对蒸发器的进水增温,以此实现太阳能相变蓄热装置与复合土壤源热泵系统的良好结合,提高整个系统的供热效率。  相似文献   

2.
Fei Ma 《传热工程》2013,34(17-18):1487-1497
ABSTRACT

The conventional solar collectors which absorb solar energy through surface of the receiver have much energy waste during energy conversion process due to heat loss from the pipe surface. Volumetric absorption solar collectors (VASC) can overcome this problem through directly absorbing solar energy by nanofliud with excellent optical absorption property. Nano-encapsulated phase change material (NPCM) is a kind of novel composite PCMs widely adopted in thermal energy storage system. The NPCM slurry (NPCS) has great potential to be used in VASC since it can be used as both the heat transfer fluid and energy storage medium. In the present study, a numerical model based on the Eulerian-Eulerian approach is built to investigate the heat transfer characteristics of NPCS in a parallel plate channel for volumetric absorption of solar energy. Influences of different parameters such as the extinction coefficient, flow velocity, radiative intensity on the performance of collector are studied through the numerical simulation. The results indicate that the NPCS shows better performance in the VASC compared with the conventional nanofluids without phase change. The information provided is helpful in the further study of solar energy volumetric absorption.  相似文献   

3.
This paper introduces a novel solar-assisted heat pump system with phase change energy storage and describes the methodology used to analyze the performance of the proposed system. A mathematical model was established for the key parts of the system including solar evaporator, condenser, phase change energy storage tank, and compressor. In parallel to the modelling work, an experimental set-up of the proposed solar energy storage heat pump system was developed. The experimental data showed that the designed system is capable of meeting cold day heating demands in rural areas of Yanbian city located in Jilin province of China. In day-time operation, the solar heat pump system stores excess energy in the energy storage tank for heating purposes. A desired indoor temperature was achieved; the average coefficient of performance of solar heat pump was identified as 4.5, and the system showed a stable performance throughout the day. In night-time operation, the energy stored in the storage tank was released through a liquid-solid change of phase in the employed phase-change material. In this way, the provision of continuous heat for ten hours was ensured within the building, and the desired indoor air conditions were achieved.  相似文献   

4.
Combining solar energy and heat pump technology is a very attractive concept. It is able to eliminate some difficulties and disadvantages of using solar dryer systems or solely using heat pump drying separately. Solar assisted heat pump drying systems have been studied and applied since the last decades in order to increase the quality of products where low temperature and well-controlled drying conditions are needed. This paper reviewed studies on the advances in solar heat pump drying systems. Results and observation from the studies of solar assisted heat pump dryer systems indicated that for heat sensitive materials; improved quality control, reduced energy consumption, high coefficient of performance and high thermal efficiency of the dryer were achieved. The way forward and future directions in R&D in this field are further research regarding theoretical and experimental analysis as well as for the replacement of conventional solar dryer or heat pump dryer with solar assisted heat pump drying systems and solar assisted chemical and ground source heat pump dryers which should present energy efficient applications of the technologies.  相似文献   

5.
Drying of agricultural food products is one of the most attractive and cost-effective applications of solar energy. The solar dryer is less reliable due to the intermittent nature of solar energy. This shortcoming can be overcome to some extent by storing solar energy. Information on sensible and latent heat storage materials and systems is spread widely in the literature. In this paper, we try to gather information about the previous and current research works in the field of thermal energy storage technology for solar air heater and dryer. The relative studies are classified on the basis of the type of storage material used in solar dryers, i.e. phase change material (PCM), rock, water, etc. Several designs of solar dryers with different heat storage materials were proposed by researchers. Recent studies focused on PCMs such as Paraffin and salt hydrate, due to their high heat storage capacity per unit volume.  相似文献   

6.
7.
An analytical model is presented and analyzed to predict the long term performance of a solar assisted house heating system with a heat pump and an underground spherical thermal energy storage tank. The system under investigation consists of a house, a heat pump, solar collectors and a storage tank. The present analytical model is based on a proper coupling of the individual energy models for the house, the heat pump, useful solar energy gain, and the transient heat transfer problem for the thermal energy storage tank. The transient heat transfer problem outside the energy storage tank is solved using a similarity transformation and Duhamel’s superposition principle. A computer code based on the present model is used to compute the performance parameters for the system under investigation. Results from the present study indicate that an operational time span of 5–7 years will be necessary before the system under investigation can attain an annually periodic operating condition. Results also indicate a decrease in the annually minimum value of the storage tank temperature with a decrease in the energy storage tank size and/or solar collector area.  相似文献   

8.
相变材料在太阳能-地源热泵系统中的应用   总被引:5,自引:0,他引:5  
王芳  郑茂余  李忠建  雷帮伟 《太阳能学报》2006,27(12):1231-1234
针对太阳能-地源热泵的供热量波动性问题,在系统中设置蓄热装置,利用相变蓄热材料具有蓄、放热的特性,达到调节系统供热量和稳定性的目的。通过对带有蓄热装置的太阳能-地源热泵系统的运行模式及其转换条件的研究,使系统运行处于最佳运行工况,提高了系统的总平均供热COP值,并使之达到6.5。  相似文献   

9.
R. Yumruta  M. Ünsal 《Energy》2000,25(12):1508
Annual periodic performance of a solar assisted ground-coupled heat pump space heating system with seasonal energy storage in a hemispherical surface tank is investigated using analytical and computational methods. The system investigated employs solar energy collection and dumping into a seasonal surface tank throughout the whole year with extraction of thermal energy from the tank for space heating during the winter season. A computational model is presented in this study for the prediction of the annual periodic transient behaviour of the system under investigation. The present computational model is based on a hybrid analytical–numerical procedure which facilitates determination of the annual variation of water temperature in the surface tank, the amounts of solar thermal energy collected during each month and the annual periodic performance of the solar aided space heating system.  相似文献   

10.
太阳能热泵供热系统实验台的设计及误差分析   总被引:2,自引:0,他引:2  
开发新能源和节能是寻找能源出路的两大途径,太阳能热泵系统以其显著的节能性和环保性具有广阔的发展前景。介绍了太阳能热泵供热实验台集热器、蓄热器等设备的设计,分析了集热器集热效率的测试误差,指出太阳能热泵供热实验台测试数据准确、可靠,为太阳能热泵供热系统的设计、安装和运行提供了有价值的参考依据。  相似文献   

11.
利用无网格迦辽金(EFG)法建立正交各向异性相变材料的传热计算模型,基于该模型编程完成各向异性材料太阳能相变蓄热水箱和管壳式相变蓄热单元的相变传热分析,并探讨热导率因子和材料方向角对复合材料相变传热特性的影响.研究表明:在相同节点布置下EFG法的温度场和相界面计算精度均高于有限元法,EFG法在动态相界面追踪方面具有明显...  相似文献   

12.
构建空气源热泵-相变蓄热水箱供暖系统,通过相变储能技术的合理应用,优化了太阳能、空气热能等非连续能源的供能方式,有效提高了建筑中可再生能源的利用率。相变蓄热系统采用了6 m3的保温水箱作为蓄热容器,选取46#石蜡为主要相变材料,304#不锈钢管为封装材料。建立蓄热系统的三维数学模型,采用有效热熔法对相变材料的焓值进行处理,运用Fluent数值模拟软件,研究相变蓄热系统的蓄放热性能。模拟结果显示,系统的蓄热时间为9.2 h,理想蓄热量为102.4 kW·h,能够单独提供低能耗建筑连续采暖11.1 h。空气源热泵-相变蓄热水箱供暖系统能实现大跨度的间歇供暖,在利用非连续能源供暖领域具有良好的前景。  相似文献   

13.
This paper presents a numerical investigation on the thermal performance of a solar latent heat storage unit composed of rectangular slabs combined with a flat-plate solar collector. The rectangular slabs of the storage unit are vertically arranged and filled with phase change material (PCM: RT50) dispersed with high conductive nanoparticles (Al2O3). A heat transfer fluid (HTF: water) goes flow in the solar collector and receives solar thermal energy form the absorber area, then circulates between the slabs to transfer heat by forced convection to nanoparticle-enhanced phase change material (NEPCM). A numerical model based on the finite volume method and the conservation equations was developed to model the heat transfer and flow processes in the storage unit. The developed model was validated by comparing the obtained results with the experimental, numerical and theoretical results published in the literature. The thermal performance of the investigated latent heat storage unit combined with the solar collector was evaluated under the meteorological data of a representative day of the month of July in Marrakesh city, Morocco. The effect of the dispersion of high conductive nanoparticles on the thermal behavior and storage performance was also evaluated and compared with the case of base PCM without additives.  相似文献   

14.
对基于复合相变材料储热单元的储热性能进行了研究。建立了复合材料和储热单元体内部的二维传热模型,考察了复合材料物性和结构尺寸及传热流体操作条件(流体流速)对单元体储热性能的影响,对比了两种不同结构单元体的储热性能,并搭建实验平台进行了实验对比研究。对比结果表明,模型结果与实验结果趋于一致,验证了模型的准确性。复合材料物性和结构尺寸及传热流体操作条件对单元体储热性能有较大的影响。相比较单管储热单元体,同心管储热单元体有着更优的储热特性,在相同的操作条件下,同心管储热单元体的储热、放热时间较单管储热单元体分别减少10%和15%。  相似文献   

15.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

16.
An analytical and computational model for a solar assisted heat pump heating system with an underground seasonal cylindrical storage tank is developed. The heating system consists of flat plate solar collectors, an underground cylindrical storage tank, a heat pump and a house to be heated during winter season. Analytical solution of transient field problem outside the storage tank is obtained by the application of complex finite Fourier transform and finite integral transform techniques. Three expressions for the heat pump, space heat requirement during the winter season and available solar energy are coupled with the solution of the transient temperature field problem. The analytical solution presented can be utilized to determine the annual variation of water temperature in the cylindrical store, transient earth temperature field surrounding the store and annual periodic performance of the heating system. A computer simulation program is developed to evaluate the annual periodic water and earth temperatures and system performance parameters based on the analytical solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
熔融盐是一种非常有前景的高温液体传热蓄热工质,在太阳能热发电、余热回收及工业热利用方面有显著的优势,但是熔融盐本身存在导热性能不高等问题。本文对纳米复合相变材料固液相变储能过程的若干最新研究进行了回顾,综述了熔融盐纳米固液相变复合材料国内外研究现状及发展趋势,最后对纳米复合相变材料固液相变储能过程的未来发展和重点研究方向进行了展望,认为主要解决纳米复合材料内熔化相变传热双温度模型的建立及求解、NC-PCM的制备工艺、金属纳米粒子的团聚性及NC-PCM蓄热器的热循环实验等方面的问题是未来研究的重点。  相似文献   

18.
In this study, a thermodynamic model of a solar assisted heat pump system with energy storage was developed. The model consists of thermodynamic correlations concerning the fundamental equipment in the system such as solar collector, energy storage tank, compressor, condenser and evaporator. Some model parameters of the system were calculated by using experimental results obtained from a pilot plant. Simulation studies were performed to assess the importance of some design factors on the system performance and economy.  相似文献   

19.
In air-based solar heating systems, the fan power needed to overcome friction loss in rock beds can reduce the benefit of the system. The system performance of rock beds with large-sized storage materials that have comparably low friction loss is studied. A theoretical model of the heat transfer process within the rock bed is developed for large storage materials. In this model, the temperature within the materials is assumed to be distributed quadratically and symmetrically at their center. The relationship between the model parameter and the air flow rate was derived from experimental measurements for some large materials as well as the pressure drop through the bed. The energy performance of heat pump solar systems with rock beds of various storage materials are studied by the computer simulation under Japanese winter weather conditions. It is concluded that the possibility exists for some large-sized storage materials to have almost the same performance as small-sized materials for heat pump solar systems.  相似文献   

20.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号