首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unsteady forces, torques and bending moments were predicted for a model podded propulsor unit at various azimuth angles. Predictions in time history include propeller shaft thrust, propulsor unit thrust, normal forces to the propeller shaft bearing, total forces acting on the propulsor unit, propeller shaft torque, blade spindle torque, in-plane and out-of-plane bending moments, and propulsor unit stock shaft torque and bending moments. Analysis was performed for averaged forces and their fluctuations as well. A time-domain unsteady multi-body panel method code, PROPELLA, was further developed for this prediction work. Predictions were compared with a set of time averaged in-house experimental data for a puller-type podded propulsor configuration in the first quadrant operation. Unsteady fluctuations of forces were predicted numerically. Analysis was made for the bending moment on propeller blades, shaft and the propulsor unit stock shaft for azimuth angles from 0° to 45°. It indicates that the magnitude and fluctuation of the forces are significant and they are essential for structural strength and design optimization. The predicted bending moment and global forces on the propulsor unit provide some useful data for ship maneuvering motion and simulation in off-design conditions.  相似文献   

2.
During ice-breaking navigation, a massive amount of crushed ice blocks with different sizes is accumulated under the hull of an ice-going ship. This ice slides into the flow field in the forward side of the podded propulsor, affecting the surrounding flow field and aggravating the non-uniformity of the propeller wake. A pulsating load is formed on the propeller, which affects the hydrodynamic performance of the podded propulsor. To study the changes in the propeller hydrodynamic performance during the ice podded propulsor interaction, the overlapping grid technique is used to simulate the unsteady hydrodynamic performance of the podded propulsor at different propeller rotation angles and different ice block sizes. Hence, the hydrodynamic blade behavior during propeller rotation under the interaction between the ice and podded propulsor is discussed. The unsteady propeller loads and surrounding flow fields obtained for ice blocks with different sizes interacting with the podded propulsor are analyzed in detail. The variation in the hydrodynamic performance during the circular motion of a propeller and the influence of ice size variation on the propeller thrust and torque are determined. The calculation results have certain reference significance for experiment-based research, theoretical calculations and numerical simulation concerning ice podded propulsor interaction.  相似文献   

3.
An integral panel method (IPM) that treats the different components of multi-component propulsors as a whole is presented for efficient propulsor performance analysis. The IPM requires consider only one blade of the propeller in the performance analysis, which significantly reduces the number of computation grid. The control equations of the IPM are derived in detail for podded propulsors, contra-rotating propellers and hybrid contra-rotating shaft pod propulsors, and based on these derivations, a general control equation for multi-component propulsors with propeller is derived. Comparison between numerical results and experimental data show that the IPM provides good accuracy for the performance analysis of multi-component propulsors with propeller. In addition, the error sources of IPM are discussed, and the reasonableness of these errors is evaluated.  相似文献   

4.
A practical, low order and potential-based surface panel method is presented to predict the flow around a three-dimensional rectangular foil section including the effect of boundary layer. The method is based on a boundary-integral formulation, known as the “Morino formulation” and the boundary layer effect is taken into account through a complementary thin boundary layer model. The numerical approach used in the method presents a strongly convergent solution based on the iterative wake roll-up and contraction model including the boundary layer effect. The method is applied to a three-dimensional foil section for which the velocity distribution around the foil was measured using a 2D Laser Doppler Velocimetry system in a large cavitation tunnel. Comparison of the predicted velocity distributions both inside and outside of the boundary layer of the foil as well as the boundary layer shapes obtained from the numerical model show fairly good correlation with the measurements, indicating the robustness and practical worthiness of the proposed method.  相似文献   

5.
Traditionally, propeller design has been focused on all activities necessary to obtain a propeller featuring a high efficiency, avoiding erosive cavitation for given operating conditions and having adequate structural strength. In recent years, more and more challenging requirements have been imposed, such as the reduction of radiated noise and pressures pulses, requiring more precise analyses and methods in the optimization of the propeller performance. On the other hand, the evaluation of the propeller strength still relies on simplified methods, which basically consider the blade as a cantilever beam subjected to characteristic static forces. Since the loads acting on a blade are variable in the blade revolution and in different operating conditions throughout the ship life, a procedure to account for the influence of fatigue phenomena is proposed. The fatigue assessment could reduce the safety factor in the propeller scantling rules and allow improving the quality of propeller design (e.g. obtaining higher efficiency, margin on cavitation phenomena, less noise).  相似文献   

6.
The tip vortex cavitation (TVC) is an issue of increasing interest, because the TVC plays an important role in propeller radiated noise and cavitation erosion. The marine propeller with winglets, which is inspired by the winglets of airfoil, is numerically investigated in the present paper. The blade tip of newly designed propeller tilts toward the pressure side. The difference between six propellers is the change of the rake angle at r/R = 1.0. The pressure coefficient, TVC, axial velocity field and helicity are analyzed. The numerical results show that the winglets of newly designed propeller scarcely affect the efficiency of propeller. The thrust coefficient gradually decreases with the increase in rake angle. As for the suction side, the pressure coefficient (Cp) of winglets propellers is higher than the conventional propeller in general. In addition, the winglets are beneficial to generate less cavitation behavior when the rake angle is small. However, as the rake angle is further increased, the cavitation behavior of winglets propeller is also increased, even larger than the conventional propeller. Therefore, it can be deduced that the winglets can be used to effectively improve the TVC characteristics to some extent.  相似文献   

7.
In this study, the flow around the pod unit is analysed and the performance characteristics of the propeller on the pod are investigated. The main objective of the present work is to further improve the original numerical method developed before for the prediction of performance of podded propellers and to further validate the earlier developed numerical model with a specific emphasis on the hydrodynamic interaction amongst the propulsor components. While in the earlier numerical method, the axial induced velocities by pod and strut parts were included into the calculations on the propeller disc plane, in the present method the tangential induced velocities on the propeller disc plane are included in the calculations as well. The flow domain around the podded propeller is mainly divided into three parts; the axisymmetric pod part, the strut part and the propeller part. While the pod and strut parts are modelled by a low-order boundary element method (BEM), the propeller is represented by a vortex lattice method (VLM). Coupling of the BEM and the VLM is carried out in an iterative manner to incorporate the effect of the pod on the propeller, and vice versa. The present numerical method is applied to two different podded propellers with zero yaw angles in order to compare the results with those of experimental measurements. The present numerical method is also validated in the case of 15° of yaw angle for a podded propulsor. The effect of pod and strut on the propeller and vice versa are discussed.  相似文献   

8.
Rudders of large container ships are easily affected by cavitation, which is well known to be induced by significant axial flows behind a propeller and discontinuities in the rudder. Among several methods to prevent or reduce the cavitation erosion occurred in the rudder, painting is gaining a lot of attention because it can be employed easily and cheaply. To conduct erosion tests properly, the simulation of heavily erosive cavitation is necessary. This can be generated using an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI (Maritime & Ocean Engineering Research Institute). The inclined shaft of the propeller creates strong cavitation, which occurs around the root of the propeller blade. This cavitation creates impacts through the collapsing process that are very severe, and are useful for realistic and efficient cavitation erosion tests. In the present study, the newly developed cavitation erosion test method is successfully employed to evaluate marine coatings that is mainly composed of epoxy elastomer or silicone polymer material. Silicone polymer-type paint B was found to have three times larger endurance than epoxy elastomer-type paint A.  相似文献   

9.
In this paper, a beam without contact with water is called the “dry” beam and the one in contact with water is called the “wet” beam. For a partially (or completely) immersed uniform beam carrying an eccentric tip mass possessing rotary inertia, the conventional analytical (closed-form) solution is achieved by considering the inertial forces and moments of the tip mass and rotary inertia as the boundary conditions at the tip end of the beam. However, it has been found that the approximate solution for the last problem may be achieved by two techniques: Method 1 and Method 2. In Method 1, the basic concept is the same as the conventional analytical method; but in Method 2, the tip end of the beam is considered as a free end, while the inertial forces and moments induced by the tip mass and rotary inertia are considered as the external loads applied at the tip end of the beam. The main differences between the formulation of Method 1 and that of Method 2 are: In Method 1, the “normal” shapes of the “dry” beam are functions of the frequency-dependent boundary conditions but the external loads at the tip end are equal to zero; On the contrary, in Method 2, the “normal” mode shapes of the “dry” beam are determined based on the zero boundary conditions at the tip end of the beam but the external loads at the tip end due to the inertial effects of the tip mass and rotary inertia must be taken into consideration for the free vibration analysis of the “wet” beam. Numerical results reveal that the approximate solution obtained from Method 2 are very close to that from Method 1 if the tip mass moment of inertia is negligible. Besides, the two approximate solutions are also very close to the associated analytical (closed-form) solution or the finite element solution. In general, it is hoped that there exist several methods for tackling the same problem so that one may have more choices to incorporate with the specified cases. It is believed that the two approximate methods presented in this paper will be significant from this point of view.  相似文献   

10.
RANS Simulation of Podded Propulsor Performances in Straight Forward Motion   总被引:1,自引:0,他引:1  
The Computational Fluid Dynamics (CFD) approach is adopted to study the steady and unsteady performances of the podded propulsor by the Fluent software package. While the interactions of the propeller blades with the pod and strut are time-dependent by nature, the mixing plane model is employed firstly to predict the steady performance, where the interactions are time-averaged. Numerical experiments are carried out with systematically varied mesh sizes to investigate the dependence of the predicted force values on the mesh sizes. Furthermore, the sliding mesh model is employed to simulate the unsteady interactions between the blades, pod and strut. Based on the numerical results, the characteristics of unsteady hydrodynamic forces are discussed, and the applicability of the mixing plane model is investigated for puller-type podded propulsor.  相似文献   

11.
On the basis of the little clause in the “Outline Specification” for a new ship: “Trial speed at a load draught of … with the engine at maximum continuous rating has to be …” some aspects regarding propulsion of single-screw ships are discussed, especially the problem of how to combine the hull form, the propeller and the machinery for propulsion in such a way that an optimal solution is obtained.In order to limit the problem, only ships provided with a single conventional propeller for propulsion are considered.A parameter study of a single-screw vessel has been done in order to get some concrete information on the interaction between ship, engine and propeller, and to investigate how the ship propeller power curve should be placed in relation to the engine operation area and to investigate changes in this relationship when the conditions change.  相似文献   

12.
13.
This paper provides an overview of a bioinspired delay stall propulsor (BDSP) concept that employs delayed stall unsteady lift enhancement to increase the lift on propeller blades without adding any complexity to the propulsor. This BDSP concept can provide greatly increased propeller thrust for a given propeller diameter, leading to both increased speed and/or maneuverability. Alternately, this technology offers reduced radiated noise while maintaining current thrust levels through reduction in both propulsor rotation speed and acoustic cancellation. Preliminary two-dimensional simulations have shown a potential 36% reduction in rotational speed at constant thrust, leading to an estimated 4-dB reduction in the total radiated acoustic power. It is believed that the BDSP concept will be simple to manufacture, rugged, and easy to retrofit into existing marine propulsors. This technology has direct application to torpedoes, unmanned underwater vehicles, maneuvering thrusters, submarines, and other propeller-driven devices.  相似文献   

14.
A linearized analysis of the response of an air cushion vehicle running in waves is described. The analysis uses the linear systems approach where the vehicle is considered to be a “black box”, i.e. the response characteristics are determined experimentally from input-output relationships. The wave forces and moments are expressed in a form that produces the proper limiting behavior for infinite wavelength. Predicted motion response is shown to compare well with experimental data.  相似文献   

15.
Surface Piercing Propellers (SPPs) are a particular kind of propellers which are partially submerged operating at the interface of air and water. They are more efficient than submerged propellers for the propulsion system of high-speed crafts because of larger propeller diameter, replacing cavitation with ventilation, decreasing the torque and higher efficiency. This study presents a reliable numerical simulation to predict SPP performance using Unsteady Reynolds-Averaged Navier–Stokes (URANS) method. A numerical study on 841-B SPP is performed in open water condition. The free surface is modeled by Volume of Fluid (VOF) approach and the sliding mesh technique is implemented to model the propeller rotational motion. The sliding mesh allows capturing the process of water entry and water exit of blades. The propeller hydrodynamic characteristics, the ventilation pattern and the time history of blade loads are validated through the comparison with available experimental data. For the studied case, it was found that the common grid independence study approach is not sufficient. The grid should be elaborately generated fine enough based on the flow pattern and turbulence modeling parameters in regions near the blade's tip, trailing and leading edges and over the suction side. Details of URANS simulations including optimal time-step size based on propeller revolution rate and the required number of propeller revolutions for periodical results are presented and discussed.  相似文献   

16.
This paper is the continuation of the work described in [14], dedicated to the presentation of the results of propeller performance in behind-hull during straight ahead motion obtained by a novel experimental set-up for the measurements of single blade loads. In the present case, the study shows and discusses the single blade and propeller loads developed during steady turning conditions, that were simulated by means of free running, self propelled maneuvering tests for a twin screw configuration. Maneuvering conditions are critical for the ship propulsion system, because the performance of the propeller and the side effects related to its functioning (propeller–hull induced pressure and vibrations, noise) are completely different with respect to the design condition in straight ahead motion. Thrust and torque and generation of in-plane loads (force and moments), developed by the blade during the period, evolve differently for the two propellers, due to different propeller–wake interactions. The understanding and the accurate quantification of propeller loads, in these realistic operative scenarios, are pivotal to design low emission and comfortable ships, fulfilling the requirements of safety and continuity of operations at sea. The analysis is carried out revisiting the investigation in [14] for three different speeds (FN = 0.26, 0.34 and 0.40) and a large set of rudder angles that span moderate and tight maneuvers.  相似文献   

17.
18.
A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.  相似文献   

19.
The energy saving performance of contra-rotating azimuth propulsor (CRAP) is investigated based on low order potential-based panel method. The hydrodynamic interactions among the forward propeller (FP), rear propeller (RP) and the pod unit (PU) which includes the pod body and the strut are considered through induced velocities which are obtained by panel method. In order to have a better understanding about the energy saving performance of CRAP, the hydrodynamic performance of a conventional propeller (CP) supplying the same thrust with CRAP at design condition is also calculated. At design condition, CRAP has a decrease in delivered power by approximately 8% comparing with CP, and the tangential induced velocities in slipstream show that CRAP recovers the rotational energy of slipstream effectively. At off-design conditions, the rotational speed of CRAP is adjusted to supply the same thrust with CP. In general, the delivered power of CRAP is significantly smaller than that of CP, and the energy saving performance of CRAP increases with the decrease of inflow velocity.  相似文献   

20.
Numerical prediction of marine propeller noise in non-uniform inflow   总被引:1,自引:0,他引:1  
A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted.Real geometry of a marine propeller DTMB 4118 is used in the calculation,and sliding mesh technique is adopted to deal with the rotational motion of the propeller.The performance of the DES(Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment.Far-field sound radiation is predicted by the formation 1A developed by Farassat,an integral solution of FW-H(Ffowcs Williams-Hawkings) equation in time domain.The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号