首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of high energy proton irradiation on pure zirconium were investigated in this study. The annealed Zr specimens (50 mm × 3 mm × 0.8 mm) were irradiated by 3.5 MeV hydrogen ions with dose ranges from 1×1013 to 1 × 1015 ions/cm2 at 335 K. The range of the proton beam penetration was measured to be 68-70 μm, depending on the surface, which is in good agreement with the SRIM simulation results. X-ray diffractometer analysis revealed that the peak intensity of the basal plane increased and the position of the peak shifted due to the proton irradiation. Field emission scanning electron microscopy results showed that with increasing irradiation dose hydrogen micro-bubbles formed, concentrated, interconnected, and eventually burst due to the excessive hydrogen pressure inside, causing surface-crack development. Measured yield and ultimate tensile strength seemed to be insignificantly affected by the proton irradiation.  相似文献   

2.
To investigate the effects of ion irradiation for improving the performance of a fuel cell, specimens were irradiated with Ar+ ion beams at total fluences of 0, 1×1017 and 5×1017 ions/cm2. After the ion-beam processing, measurements of the hydrogen concentration at the near-surface and of the electrical conductivity of the specimens, along with scanning electron microscopy observations, showed that the increase in oxygen vacancies formed due to irradiation contributed not only to an increase in hydrogen concentration on the surface but to an improvement in proton conductivity. These results suggest that this method is effective for improving the proton conductivity in proton-conducting Y-doped BaCeO3???. Additionally, unit fuel cells were fabricated using the Y-doped BaCeO3???s irradiated by the ion beam with different fluences. It was observed from their I-V and I-P curves, that with the increase in Ar+ fluence, both the current density and power density were improved.  相似文献   

3.
Polyvinylidene fluoride (PVDF) films of different thicknesses are irradiated with 100 meV Ag-ion and 75 meV Oxygen-ion beams at different fluences to study the effects of swift heavy ion (SHI) irradiation in PVDF. The change in physical, chemical, and surface morphological properties of irradiated films are investigated using x-ray diffraction, Field emission scanning electron microscopy (FESEM), and energy dispersive analysis by x-ray (EDAX) techniques by taking unirradiated (pristine) films as reference. The diffraction pattern shows that PVDF polymer is in semi-crystalline form and possesses crystalline α-, β-, and γ-phases. A decrease in the crystallinity and crystallite size has been observed when PVDF is irradiated with 100 meV Ag-, and also Oxygen ions at a higher fluence of 5.675 × 1012 ions/cm2. However, an increase in crystallinity and decrease in crystallite size are observed when PVDF is irradiated with oxygen-ion beam at lower fluence 5.625 × 1011 ions/cm2. The structural parameters such as degree of crystallinity, crystallite size, microstrain, and dislocation density have also been estimated. EDAX result shows that the chemical composition of PVDF is invariant under SHI irradiation, which is in agreement with our earlier results of FTIR. FESEM analysis shows granular microstructure with small porosity on SHI irradiation.  相似文献   

4.
The paper describes an experimental study aimed at suppressing stress corrosion cracking susceptibility of machined 304L stainless steel specimens through laser shock peening. The study also evaluates a new approach of oblique laser shock peening to suppress stress corrosion cracking susceptibility of internal surface of type 304L stainless steel tube. The results of the study, performed with an indigenously developed 2.5 J/7 ns Nd:YAG laser, demonstrated that laser shock peening effectively suppresses chloride stress corrosion cracking susceptibility of machined surface of type 304L stainless steel. In the investigated range of incident laser power density (3.2-6.4 GW/cm2), machined specimens peened with power density of 4.5 and 6.4 GW/cm2 displayed lower stress corrosion cracking susceptibility considerably than those treated with 3.2 and 3.6 GW/cm2 in boiling magnesium chloride test. Oblique laser shock peening, performed on machined internal surface of a type 304L stainless steel tube (OD = 111 mm; ID = 101 mm), was successful in introducing residual compressive surface stresses which brought about significant suppression of its stress corrosion cracking susceptibility. The technique of oblique laser shock peening, in spite of its inherent limitations on the length of peened region being limited by tube internal diameter and the need for access from both the sides, presents a simplified approach for peening internal surface of small tubular components.  相似文献   

5.
Sprayed indium tin oxide (ITO) thin films are synthesized by mixing adequate quantities of ethanolic solutions of indium trichloride and stannic chloride at different substrate temperatures. The pyrolytic decomposition temperature affects the properties and morphology of ITO samples. X-ray diffraction results showed that the films are polycrystalline with cubic structure and exhibit preferential orientation along (222) plane. The SEM and AFM studies indicated that the surface morphology of the samples increases with substrate temperature. The typical I500 sample is composed of cubic grains and has carrier concentration of 3.26 × 1020 cm?3 and mobility of 9.77 cm2/V s. The electrical resistivity of ITO films decreased with increasing deposition temperature. The highest figure of merit of film is 4.4 × 10?3 Ω?1. Optical absorption studies reveal that films are highly transparent in the visible region and band gap increases with substrate temperature owing to Moss-Burstein effect.  相似文献   

6.
Supersonic spray coating techniques were applied to deposit ceramic and clay particles as films for use in electrical insulation. TiO2 and Al2O3 ceramics were aerosol-deposited under vacuum while kaolinite, montmorillonite, and bentonite clays were deposited by cold spraying in open air. The electrical resistivity of Al2O3 and TiO2 were ~109 and ~108 Ω cm, respectively. The resistivity of kaolinite and montmorillonite were ~1012 Ω cm. Bentonite showed the lowest electrical resistivity of ~109 Ω cm among the clays because of the high cation exchange capacity of the material. The film surface morphologies and mechanical properties in the form of hardness and scratchability were also investigated.  相似文献   

7.
We modify the electrical properties of polyimide (PI) films by irradiation with 80 keV Xe ions. The surface resistivity of irradiated PI film at room temperature decreases remarkably from 1.2 × 1014 Ω/□ for virgin PI film to 3.15 × 106 Ω/□ for PI film irradiated by 5.0 × 1016 ions/cm2, and the temperature dependence of the resistivity of the treated films is well-fit using Mott's Equation. The irradiated PI film structure is studied using Raman spectroscopy, X-ray diffraction, and Rutherford Backscattering Spectrometry. The concentration of O in the irradiated layer decreases with increasing fluence, while the variation of N concentration is negligible. Graphite-like carbon-rich phases are created in the irradiated layers, leading to the modification of the electrical properties.  相似文献   

8.
Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 °C shows the electrical resistivity of 4.18×10?4 ωcm, an electron concentration of 7.5×1020/cm3, and carrier mobility of 25.4 cm2/(V·s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the Al ratio.  相似文献   

9.
The wear resistance and wear mechanism of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam (HIPIB) at an ion current density of 100 A/cm2 with shot number from one to ten are investigated by dry sliding wear tests. The cross-sectional microstructure and surface microhardness of the irradiated AZ31 magnesium alloys are examined by optical microscopy (OM) and Vickers tester, respectively. It is found that surface hardness increased with increasing shot number, from an original value of 570 MPa to a maximal value of 820 MPa with ten shots, and the wear rate of the samples irradiated with five and ten shots was about one order of magnitude less than that of the original sample. The transition from severe metallic wear to mild oxidative wear induced by HIPIB irradiation was identified through a combined analysis in surface morphology and chemical composition of wear tracks, mechanically mixed materials, wear debris and wear scars of counterface steel ball by using scanning electron microscopy (SEM) and electron probe microanalysis (EPMA), which is mainly attributed to the significant increase in microhardness resulting from grain refinement on the irradiated surface.  相似文献   

10.
The influence of nickel on the neutron irradiation embrittlement of Ni-Mo-Cr reactor pressure vessel (RPV) steels was investigated using alloys containing nickel in the range of 0.9–3.5 wt%. In all investigated alloys, the neutron irradiation with two dose conditions of 4.5 × 1019 neutron/cm2 at 290 °C and 9.0 × 1019 neutron/cm2 at 290 °C, respectively, increased the hardness and ductile-to-brittle transition temperature (DBTT). However, the increases of the hardness and DBTT resulting from the neutron irradiation were primarily affected by the irradiation dose that is closely related to the generation of irradiation defects, but not by the nickel content. In addition, a linear relationship between the changes in the hardness and DBTT subjected to the irradiation was confirmed. These results demonstrate that increasing the nickel content up to 3.5 wt% does not have a harmful effect on the irradiation embrittlement of Ni-Mo-Cr reactor pressure vessel (RPV) steels.  相似文献   

11.
ZnO/Cu/ZnO transparent conductive thin films were prepared by RF sputtering deposition of ZnO target and DC sputtering deposition of Cu target on n-type (001) Si and glass substrates at room temperature. The morphology, structure, optical, and electrical properties of the multilayer films were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), UV/Vis spectrophotometer, and Hall effect measurement system. The influence of Cu layer thickness and the oxygen pressure in sputtering atmosphere on the film properties were studied. ZnO/Cu/ZnO transparent conductive film fabricated in pure Ar atmosphere with 10 nm Cu layer thickness has the best performance: resistivity of 2.3×10-4 Ω·cm, carrier concentration of 6.44×1016cm-2 , mobility of 4.51cm2·(V·s)-1 , and acceptable average transmittance of 80 % in the visible range. The transmittance and conductivity of the films fabricated with oxygen are lower than those of the films fabricated without oxygen, which indicates that oxygen atmosphere does not improve the optical and electrical properties of ZnO/Cu/ ZnO films.  相似文献   

12.
The results of studies of the radiation damage of V-N coatings irradiated by nitrogen and helium ions with energies of 40 and 20 keV, respectively, are presented. The coatings have been obtained using a technique of ion-stimulated deposition and represented a nanocrystalline composite with grain sizes of 20–50 nm, intergrain junctions of which contained voids with sizes of 3–6 nm. It has been shown that during irradiation, the electrical resistivity of such objects increases. No visible structure changes are observed up to doses of 7–8 × 1016 ion/cm2. A further increase in the dose leads to changes in the void structure and to a transformation of the closed porosity to an open one. It has been shown that the system of arising channels creates conditions for evolving the accumulating helium and preserving the integrity of the coating.  相似文献   

13.
The influence of atomic disorder induced by irradiation with fast neutrons on the properties of normal and superconducting states of polycrystalline samples of FeSe has been studied. The irradiation with fluences of fast neutrons up to 1.25 × 1020 cm?2 at the irradiation temperature T irr ?? 50°C leads to relatively small changes in the temperature T c of the superconducting transition and in the electrical resistivity ??25 at 25 K. This behavior is related to the relatively low concentration of radiation defects arising at a given irradiation temperature, which is a consequence of a specific crystal structure of FeSe, which is more simple as compared to other layered compounds of this class.  相似文献   

14.
The In2O3:W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1. 0× 10-3 Ω· cm, highest carrier mobility of 43. 7 cm2. W-1. s-1 and carrier concentration of 1. 4× 1020 cm-3 was obtained at the content of 2. 8 wt. %. The average optical transmittance from 300 nm to 900 nm reached 87. 6%.  相似文献   

15.
Al-doped ZnO (AZO) thin films were deposited on glass substrates by rf-sputtering at room temperature. The effects of substrate rotation speed (ωS) on the morphological, structural, optical and electrical properties were investigated. SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation. AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one, leading to smaller grain sizes. XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis. The average optical transmittance was above 90% in UV-Vis region. The lowest resistivity value (8.5×10?3 Ω·cm) was achieved at ωS=0 r/min, with a carrier concentration of 1.8×1020 cm?3, and a Hall mobility of 4.19 cm2/(V·s). For all other samples, the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity. These results indicate that the morphology, structure, optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.  相似文献   

16.
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6. 4× 10-4 Ω·cm were obtained at a growth temperature of 225 ℃ and sputtering power of 40 W, with carrier mobility of 33. 0 cm2· V-1·s-1 and carrier concentration of 2. 8× 1020 cm-3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.  相似文献   

17.
This research aimed to study the effects of laser glazing treatment on microstructure, hardness, and oxidation behavior of Stellite 6 coating deposited by high velocity oxygen fuel (HVOF) spraying. The as-sprayed Stellite 6 coating (ST-HVOF) was subjected to single-pass and multiple-pass laser treatments to achieve the optimum glazing parameters. Microstructural characterizations were performed by x-ray diffractometry and field emission scanning electron microscopy equipped with energy-dispersive spectroscopy. Two-step optimization showed that laser treatment at the power of 200 W with a scan rate of 4 mm/s causes a surface layer with a thickness of 208 ± 32 µm to be remelted, while the underlying layers retain the original ST-HVOF coating structure. The obtained sample (ST-Glazing) exhibited a highly dense and uniform structure with an extremely low porosity of ~0.3%, much lower than that of ST-HVOF coating (2.3%). The average microhardness of ST-Glazing was measured to be 519 Hv0.3 indicating a 17% decrease compared to ST-HVOF (625 Hv0.3) due to the residual stress relief and dendrite coarsening from submicron size to ~3.4 µm after laser treatment. The lowest oxidation mass gain was obtained for ST-Glazing by 2 mg/cm2 after 8 cycles at 900 °C indicating 52 and 84% improvement in oxidation resistance in comparison to ST-HVOF and bare 316L steel substrates, respectively.  相似文献   

18.
A series of single phase X-type hexagonal ferrites with concentration Sr2?x Nd x Ni2Fe28?y Co y O46 (x = 0.02, 0.04, 0.06, 0.08, 0.10 and y = 0.1, 0.2, 0.3, 0.4, 0.5) has been prepared by sol-gel method sintered at 1250 °C for 6 h. The x-ray diffraction analysis reveals the single phase of X-type hexagonal ferrites. The particle size was calculated by using SEM and TEM. The ferrite substituted with Nd3+ and Co2+ has average particle size in the range of 40-50 nm. The room temperature electrical resistivity experiences the significant enhancement from a value of 1.1 × 107 to 2.03 × 108 Ωcm with the increase in Nd3+ and Co2+ concentration. The dielectric constant exhibits high value at low frequencies and decreases with the increase of frequency. The tangent dielectric loss shows the abnormal behavior which can be explained on the basis of hopping between the Fe2+ and Fe3+ ions on octahedral sites. The maximum value of tangent loss at low frequencies reflects the application of these materials in medium frequency devices (MF).  相似文献   

19.
Amorphous metallic alloys or bulk metallic glasses are emerging as promising materials for a range of structural, microelectromechanical systems, and biomedical applications. With the recent developments in spark plasma sintering and superplastic forming of the amorphous alloys, it is likely that the amorphous alloys will find a place in new applications. In this article, surface hardening of spark plasma sintered Fe48Cr15Mo14Y2C15B6 bulk amorphous alloys using a continuous-wave Nd:YAG laser is reported. Depending on the processing parameters, the laser surface irradiation causes structural relaxation (enhanced medium-range ordering and/or annihilation of excess free volume) and nanocrystallization of hard carbides (M23C6 and M7C3), resulting in surface hardening. Detailed investigations on the thermal effects, microstructural modifications, and hardness improvements due to laser surface irradiation with laser fluence in the range of 1.77–2.36 J/mm2 are presented. An increase in hardness in the range of 1360–1560 HV for laser surface-treated alloys compared to 1200 HV for as-sintered alloys over a hardening depth of about 50–80 µm is observed.  相似文献   

20.
A low energy N2 ? ion beam impinged on a α-Al2O3(0001) single crystal surface in the range of fluence 5×1015/cm2?1×1018/cm2 at room temperature. After ion bombardment, chemical bonding on the modified sapphire surface was investigated by x-ray photoelectron spectroscopy. Below a fluence of 1×1015/cm2, only a non-bonded N1s peak at the binding energy 398.7 eV was found, but further irradiation up to 2×1017/cm2 induced Al?O?N bonding at around 403 eV. The occurrence of Al?N bonding was identified at ion fluence higher than 5×1017/cm2 at 396.6 eV. II–VI ZnO thin films were grown on an untreated/ion-beam-induced sapphire surface by pulsed laser deposition (PLD) for the investigation of the modified-substrate effect on photoluminescence. The ZnO films grown on modified sapphire containing Al?O?N bonding only, and both Al?O?N and Al?N bonding showed a significant reduction of the peak related to deep-level defects in photoluminescence. These results are explained in terms of the formation of Al?N?O and Al?O?N layers and relaxation of the interfacial strain between Al2O3 and ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号