首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The moderate complexity of low-density parity-check (LDPC) codes under iterative decoding is attributed to the sparseness of their parity-check matrices. It is therefore of interest to consider how sparse parity-check matrices of binary linear block codes can be a function of the gap between their achievable rates and the channel capacity. This issue was addressed by Sason and Urbanke, and it is revisited in this paper. The remarkable performance of LDPC codes under practical and suboptimal decoding algorithms motivates the assessment of the inherent loss in performance which is attributed to the structure of the code or ensemble under maximum-likelihood (ML) decoding, and the additional loss which is imposed by the suboptimality of the decoder. These issues are addressed by obtaining upper bounds on the achievable rates of binary linear block codes, and lower bounds on the asymptotic density of their parity-check matrices as a function of the gap between their achievable rates and the channel capacity; these bounds are valid under ML decoding, and hence, they are valid for any suboptimal decoding algorithm. The new bounds improve on previously reported results by Burshtein and by Sason and Urbanke, and they hold for the case where the transmission takes place over an arbitrary memoryless binary-input output-symmetric (MBIOS) channel. The significance of these information-theoretic bounds is in assessing the tradeoff between the asymptotic performance of LDPC codes and their decoding complexity (per iteration) under message-passing decoding. They are also helpful in studying the potential achievable rates of ensembles of LDPC codes under optimal decoding; by comparing these thresholds with those calculated by the density evolution technique, one obtains a measure for the asymptotic suboptimality of iterative decoding algorithms  相似文献   

2.
This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of the degree distributions, graphical complexity, and the number of fundamental cycles in the bipartite graphs are considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/bit error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others are proved under belief propagation (BP) decoding. Proving these bounds under a certain decoding algorithm, validates them automatically also under any suboptimal decoding algorithm. A proper modification of these bounds makes them universal for the set of all MBIOS channels which exhibit a given capacity. Bounds on the degree distributions and graphical complexity apply to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-approaching LDPC code ensembles under BP decoding, and they are shown to be informative and are easy to calculate. Finally, some interesting open problems are considered.  相似文献   

3.
We show how asymptotic estimates of powers of polynomials with nonnegative coefficients can be used in the analysis of low-density parity-check (LDPC) codes. In particular, we show how these estimates can be used to derive the asymptotic distance spectrum of both regular and irregular LDPC code ensembles. We then consider the binary erasure channel (BEC). Using these estimates we derive lower bounds on the error exponent, under iterative decoding, of LDPC codes used over the BEC. Both regular and irregular code structures are considered. These bounds are compared to the corresponding bounds when optimal (maximum-likelihood (ML)) decoding is applied.  相似文献   

4.
This correspondence studies the performance of the iterative decoding of low-density parity-check (LDPC) code ensembles that have linear typical minimum distance and stopping set size. We first obtain a lower bound on the achievable rates of these ensembles over memoryless binary-input output-symmetric channels. We improve this bound for the binary erasure channel. We also introduce a method to construct the codes meeting the lower bound for the binary erasure channel. Then, we give upper bounds on the rate of LDPC codes with linear minimum distance when their right degree distribution is fixed. We compare these bounds to the previously derived upper bounds on the rate when there is no restriction on the code ensemble.  相似文献   

5.
We present two sequences of ensembles of nonsystematic irregular repeat-accumulate (IRA) codes which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC) with bounded complexity per information bit. This is in contrast to all previous constructions of capacity-achieving sequences of ensembles whose complexity grows at least like the log of the inverse of the gap (in rate) to capacity. The new bounded complexity result is achieved by puncturing bits, and allowing in this way a sufficient number of state nodes in the Tanner graph representing the codes. We derive an information-theoretic lower bound on the decoding complexity of randomly punctured codes on graphs. The bound holds for every memoryless binary-input output-symmetric (MBIOS) channel and is refined for the binary erasure channel.  相似文献   

6.
We derive expressions for the average distance distributions in several ensembles of regular low-density parity-check codes (LDPC). Among these ensembles are the standard one defined by matrices having given column and row sums, ensembles defined by matrices with given column sums or given row sums, and an ensemble defined by bipartite graphs  相似文献   

7.
We derive both upper and lower bounds on the decoding error probability of maximum-likelihood (ML) decoded low-density parity-check (LDPC) codes. The results hold for any binary-input symmetric-output channel. Our results indicate that for various appropriately chosen ensembles of LDPC codes, reliable communication is possible up to channel capacity. However, the ensemble averaged decoding error probability decreases polynomially, and not exponentially. The lower and upper bounds coincide asymptotically, thus showing the tightness of the bounds. However, for ensembles with suitably chosen parameters, the error probability of almost all codes is exponentially decreasing, with an error exponent that can be set arbitrarily close to the standard random coding exponent  相似文献   

8.
In this paper, we are concerned with the finite-length analysis of low-density parity-check (LDPC) codes when used over the binary erasure channel (BEC). The main result is an expression for the exact average bit and block erasure probability for a given regular ensemble of LDPC codes when decoded iteratively. We also give expressions for upper bounds on the average bit and block erasure probability for regular LDPC ensembles and the standard random ensemble under maximum-likelihood (ML) decoding. Finally, we present what we consider to be the most important open problems in this area  相似文献   

9.
The performance of nonbinary linear block codes is studied in this paper via the derivation of new upper bounds on the block error probability under maximum-likelihood (ML) decoding. The transmission of these codes is assumed to take place over a memoryless and symmetric channel. The new bounds, which are based on the Gallager bounds and their variations, are applied to the Gallager ensembles of nonbinary and regular low-density parity-check (LDPC) codes. These upper bounds are also compared with sphere-packing lower bounds. This study indicates that the new upper bounds are useful for the performance evaluation of coded communication systems which incorporate nonbinary coding techniques.   相似文献   

10.
We consider Gallager's (1963) soft-decoding (belief propagation) algorithm for decoding low-density parity-check (LDPC) codes, when applied to an arbitrary binary-input symmetric-output channel. By considering the expected values of the messages, we derive both lower and upper bounds on the performance of the algorithm. We also derive various properties of the decoding algorithm, such as a certain robustness to the details of the channel noise. Our results apply both to regular and irregular LDPC codes  相似文献   

11.
We derive upper bounds on the rate of low-density parity-check (LDPC) codes for which reliable communication is achievable. We first generalize Gallager's (1963) bound to a general binary-input symmetric-output channel. We then proceed to derive tighter bounds. We also derive upper bounds on the rate as a function of the minimum distance of the code. We consider both individual codes and ensembles of codes.  相似文献   

12.
We derive upper bounds on the maximum achievable rate of low-density parity-check (LDPC) codes used over the binary erasure channel (BEC) under Gallager's decoding algorithm, given their right-degree distribution. We demonstrate the bounds on the ensemble of right-regular LDPC codes and compare them with an explicit left-degree distribution constructed from the given right degree.  相似文献   

13.
This paper investigates decoding of low-density parity-check (LDPC) codes over the binary erasure channel (BEC). We study the iterative and maximum-likelihood (ML) decoding of LDPC codes on this channel. We derive bounds on the ML decoding of LDPC codes on the BEC. We then present an improved decoding algorithm. The proposed algorithm has almost the same complexity as the standard iterative decoding. However, it has better performance. Simulations show that we can decrease the error rate by several orders of magnitude using the proposed algorithm. We also provide some graph-theoretic properties of different decoding algorithms of LDPC codes over the BEC which we think are useful to better understand the LDPC decoding methods, in particular, for finite-length codes.  相似文献   

14.
New upper bounds on the rate of low-density parity-check (LDPC) codes as a function of the minimum distance of the code are derived. The bounds apply to regular LDPC codes, and sometimes also to right-regular LDPC codes. Their derivation is based on combinatorial arguments and linear programming. The new bounds improve upon the previous bounds due to Burshtein et al. It is proved that at least for high rates, regular LDPC codes with full-rank parity-check matrices have worse relative minimum distance than the one guaranteed by the Gilbert-Varshamov bound.  相似文献   

15.
This paper introduces ensembles of systematic accumulate-repeat-accumulate (ARA) codes which asymptotically achieve capacity on the binary erasure channel (BEC) with bounded complexity, per information bit, of encoding and decoding. It also introduces symmetry properties which play a central role in the construction of new capacity-achieving ensembles for the BEC. The results here improve on the tradeoff between performance and complexity provided by previous constructions of capacity-achieving code ensembles defined on graphs. The superiority of ARA codes with moderate to large block length is exemplified by computer simulations which compare their performance with those of previously reported capacity-achieving ensembles of low-density parity-check (LDPC) and irregular repeat-accumulate (IRA) codes. ARA codes also have the advantage of being systematic.  相似文献   

16.
We derive here improved upper bounds on the decoding error probability of block codes which are transmitted over fully interleaved Rician fading channels, coherently detected and maximum-likelihood (ML) decoded. We assume that the fading coefficients during each symbol are statistically independent (due to a perfect channel interleaver), and that perfect estimates of these fading coefficients are provided to the receiver. The improved upper bounds on the block and bit error probabilities are derived for fully interleaved fading channels with various orders of space diversity, and are found by generalizing some previously introduced upper bounds for the binary-input additive white Gaussian nose (AWGN) channel. The advantage of these bounds over the ubiquitous union bound is demonstrated for some ensembles of turbo codes and low-density parity-check (LDPC) codes, and it is especially pronounced in a portion of the rate region exceeding the cutoff rate. Our generalization of the Duman and Salehi bound (Duman and Salehi 1998, Duman 1998) which is based on certain variations of Gallager's (1965) bounding technique, is demonstrated to be the tightest reported upper bound. We therefore apply it to calculate numerically upper bounds on the thresholds of some ensembles of turbo-like codes, referring to the optimal ML decoding. For certain ensembles of uniformly interleaved turbo codes, the upper bounds derived here also indicate good match with computer simulation results of efficient iterative decoding algorithms  相似文献   

17.
This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zopfm and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a posteriori probability (MAP) decoder on the uncoded channel. For Zopf m LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/symmetric-output channels, which gives a sufficient stability condition for Zopfm LDPC codes and is complemented by a matched necessary stability condition introduced herein. Applications to coded modulation and to codes with nonequiprobably distributed codewords are also discussed. For binary codes, two new lower bounds are provided for symmetric channels, including a two-dimensional iterative bound and a one-dimensional noniterative bound, the latter of which is the best known bound that is tight for binary-symmetric channels (BSCs), and is a strict improvement over the existing bound derived by the channel degradation argument. By adopting the reverse channel perspective, upper and lower bounds on the decodable Bhattacharyya noise parameter are derived for nonsymmetric channels, which coincides with the existing bound for symmetric channels  相似文献   

18.
Weight Distribution of Low-Density Parity-Check Codes   总被引:1,自引:0,他引:1  
We derive the average weight distribution function and its asymptotic growth rate for low-density parity-check (LDPC) code ensembles. We show that the growth rate of the minimum distance of LDPC codes depends only on the degree distribution pair. It turns out that capacity-achieving sequences of standard (unstructured) LDPC codes under iterative decoding over the binary erasure channel (BEC) known to date have sublinearly growing minimum distance in the block length  相似文献   

19.
Codes on sparse graphs have been shown to achieve remarkable performance in point-to-point channels with low decoding complexity. Most of the results in this area are based on experimental evidence and/or approximate analysis. The question of whether codes on sparse graphs can achieve the capacity of noisy channels with iterative decoding is still open, and has only been conclusively and positively answered for the binary erasure channel. On the other hand, codes on sparse graphs have been proven to achieve the capacity of memoryless, binary-input, output-symmetric channels with finite graphical complexity per information bit when maximum likelihood (ML) decoding is performed. In this paper, we consider transmission over finite-state channels (FSCs). We derive upper bounds on the average error probability of code ensembles with ML decoding. Based on these bounds we show that codes on sparse graphs can achieve the symmetric information rate (SIR) of FSCs, which is the maximum achievable rate with independently and uniformly distributed input sequences. In order to achieve rates beyond the SIR, we consider a simple quantization scheme that when applied to ensembles of codes on sparse graphs induces a Markov distribution on the transmitted sequence. By deriving average error probability bounds for these quantized code ensembles, we prove that they can achieve the information rates corresponding to the induced Markov distribution, and thus approach the FSC capacity.  相似文献   

20.
Capacity-approaching protograph codes   总被引:1,自引:0,他引:1  
This paper discusses construction of protographbased low-density parity-check (LDPC) codes. Emphasis is placed on protograph ensembles whose typical minimum distance grows linearly with block size. Asymptotic performance analysis for both weight enumeration and iterative decoding threshold determination is provided and applied to a series of code constructions. Construction techniques that yield both low thresholds and linear minimum distance growth are introduced by way of example throughout. The paper also examines implementation strategies for high throughput decoding derived from first principles of belief propagation on bipartite graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号