首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nanocrystalline zinc-blende-structured ZnSe:N films have been deposited on GaAs(100) substrates by pulsed laser deposition (PLD). The growth of the nanocrystalline ZnSe:N films is found to be greatly affected by the pressure of ambient N2. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) results show that the morphologies of the as-grown films are sensitive to the ambient pressure at a fixed substrate temperature of 300 °C, and the sizes of the as-grown ZnSe:N nanocrystals increase as the ambient pressure increases from 0.1 Pa to 100 Pa. The average sizes of the as-grown nanocrystals are estimated to be about 19 nm, 29 nm, and 71 nm for 0.1 Pa, 1 Pa, and 100 Pa ambient N2 pressure, respectively. X-ray photoelectron spectroscopy analyses show that the N-doping concentration in the as-grown film is over 1021 cm−3. Raman spectra demonstrate the broadening of the longitudinal optical (LO) phonon and transverse optical (TO) phonon modes of the ZnSe nanocrystals. Based on these analyses, the mechanism of the formation of ZnSe:N nanocrystals is discussed.  相似文献   

2.
Chalcogenide thin films of Ge20Se70Ag10 of thicknesses 150, 300 and 450 nm are prepared by a thermal evaporation technique. The crystalline phases of the deposited film are identified by X-ray diffraction. The transmittance and reflectance of the films are measured in the wavelength range 200–2500 nm. The optical band gap decreases while the width of the localized states tail increases with increasing film thickness. Variation of refractive index and extinction coefficient with the film thickness is studied to analyze the optical efficiency of these films. Application of the single oscillator model to the films reveals that the oscillator energy decreases while the dispersion energy increases with increasing thickness. The variation of the optical constants suggests that the thickness change is a good choice to control the optical properties of Ge20Se70Ag10 film.  相似文献   

3.
La0.7Ba0.3MnO3 (LBMO) thin films with different thicknesses were deposited on Si substrates using an electron beam evaporation technique for bolometer applications. To evaluate the influence of the thickness on their structural, compositional, morphological, and electrical properties, the LBMO thin films were characterized by x-ray diffraction (XRD), energy-dispersive spectroscopy, atomic force microscopy, and a four-probe method. XRD measurements showed that the crystal quality of the LBMO films improved with increasing thickness. The surface morphology revealed that the grain size and surface roughness of the films increased with increasing thickness. The resistivity increased with increasing thickness of the film. The temperature coefficient of resistance of the LBMO films decreased from 5.15%/K to 4.12%/K with increase of the film thickness from 20 nm to 100 nm.  相似文献   

4.
采用磁控溅射法, 在玻璃基底上一步沉积In2S3薄膜。研究了溅射功率对In2S3薄膜的成分、结构、表面形貌和光电性能的影响。结果表明: 所制备的所有薄膜均为β-In2S3, 无杂相存在, 且具有(222)面择优生长特性。溅射功率对薄膜的成分、厚度和结晶度具有明显的影响, 并因此影响薄膜的光学和电学性能。薄膜在100W沉积时最接近化学计量比, 薄膜的透过率随着溅射功率增大在500nm波段附近显著提高, 禁带宽度达到2.45eV, 同时电流密度增大两个数量级。  相似文献   

5.
This study focusses on the investigation of RF power variations (100–300 W) effects on structural, morphological and optical properties of CaCu3Ti4O12 thin film deposited on ITO/glass substrate in a non-reactive atmosphere (Ar). The increase of RF power from 100 W to 300 W led to evolution of (112), (022), (033), and (224) of CCTO XRD peaks. The results indicated that all the films were polycrystalline nature with cubic structure. The crystallite size increased from 20 nm to 25 nm with increasing RF power. FESEM revealed that the films deposited were uniform, porous with granular form, while the grain size increased from 30 to 50 nm. AFM analysis confirmed the increment in surface roughness from 1.6 to 2.3 nm with increasing film grain size. Besides, optical transmittance values decreased to minimum 70% with increasing RF power while optical energy bandgap increased from 3.20 eV to 3.44 eV. Therefore, favorable CCTO thin film properties can be possibly obtained for certain application by controlling RF magnetron sputtering power.  相似文献   

6.
Zinc selenide (ZnSe) nanocrystalline thin films were prepared by using chemical bath deposition at different ammonia concentrations and different deposition temperatures. The structural and optical properties of ZnSe nanocrystalline thin films were investigated as a function of the ammonia concentration in precursors or the deposition temperature using scanning electron microscopy, energy-dispersive spectrometry, x-ray diffraction measurements, and ultraviolet (UV)–visible spectrophotometry measurements. The results reveal that the ZnSe thin films are composed of a large number of uniform spherical particles. Each spherical particle contains several nanocrystals 5 nm to 7 nm in crystallite size. An increase in both the average diameter of the spherical particles and the crystallite size of the nanocrystals occurs with an increase in ammonia concentration and/or deposition temperature. The Se/Zn atom ratios in the ZnSe thin films increase and the optical band gaps, E g, of the ZnSe thin films decrease with an increase in ammonia concentration or deposition temperature. The kinetics and reaction mechanism of the ZnSe nanocrystalline thin films during deposition are discussed.  相似文献   

7.
Aluminum oxide-doped zinc oxide (ZnO:Al2O3) transparent thin films were deposited by DC magnetron sputtering on glass substrates; film thickness can be correlated with deposition time. The effect of ZnO:Al2O3 film thickness on electrical properties, ultraviolet (UV) transmission, surface morphology and structure, solvent resistance, and scratch hardness was investigated. The surface roughness and crystallite size of deposited films increased from 0.75 to 2.22 nm and from 14 to 57 nm, respectively, as the film thickness was increased from 18 to 112 nm. In contrast, the percent UV transmission (% T) of ZnO:Al2O3 deposited glass plates at a wavelength of 365 nm increased when the film thickness was decreased. The electrical properties of nano-film deposited glass plates such as electrical resistance, tribo-charge voltage, and decay time were in the range of electrostatic discharge (ESD) specifications. The ZnO:Al2O3 nano-film deposited glass substrate possessed good acetone and iso-propanol resistance as well as high scratch hardness. This work opens up the possibility of using the ZnO:Al2O3 transparent ultra-thin film on glass substrate in ESD applications based on their excellent properties in terms of the relatively thin and adjustable ZnO:Al2O3 film thickness needed.  相似文献   

8.
CO2激光辐照下光学薄膜的温度场与热畸变   总被引:4,自引:2,他引:2       下载免费PDF全文
介绍了光学薄膜温度场的基本理论,利用交替隐型技术,对10.6μm激光辐照下介质薄膜的温度场分布进行了数值模拟和理论分析。在此基础上,利用夏克-哈特曼波前传感器对介质基底样品、不同厚度的介质单层膜样品以及不同膜系的YbF3/ZnSe介质多层膜样品在10.6μmCO2激光辐照下的热畸变进行了实验研究。研究结果表明,激光辐照下光学薄膜样品的温度场分布与辐照激光的光场分布、激光功率以及激光的辐照时间等因素有关。对于10.6μm激光而言,Ge最适宜做基底材料。  相似文献   

9.
The optical properties of hydrogenated amorphous silicon thin films prepared by a new thermocatalytic plasma enhanced chemical vapor deposition (PECVD) method are here reported for the first time. The transmission spectrum of the film, deposited at a rate of 1.5 nm/s, was measured between 500 and 1100 nm. The envelopes of the transmission spectrum interference maxima and minima were analyzed to reveal the absorption coefficient α(λ@#@), the refractive indexn(λ), the average thickness of the film (791 nm) and the variation of the thickness (11.4 nm), using an analysis which takes into account film inhomogeneity. The modified Newton's method of numerical analysis was used to obtain the optical parameters. The optical band gap ε0} was determined to be 1.69 eV from the absorption coefficient spectrum, commensurate with values quoted for lower deposition rate PECVD films. The value for ε0}, the small variation of the film thickness, and a value for the defect density of 3.7 x 1015}cm-3} determined for similar material in other work indicate that the thermocatalytic PECVD method can produce acceptable quality films at a high deposition rate.  相似文献   

10.
脉冲激光烧蚀沉积ZnSe薄膜的研究   总被引:4,自引:2,他引:2  
用 2 48nm的KrF准分子脉冲激光烧蚀ZnSe靶材沉积ZnSe薄膜。靶采用多晶ZnSe片 ,衬底采用抛光GaAs(10 0 )。衬底预处理采用化学刻蚀和高温处理。原子力显微镜 (AFM )观察显示在GaAs(10 0 )沉积的ZnSe薄膜的平均粗糙度为 3~ 4nm。X射线衍射 (XRD)结果表明ZnSe薄膜 (4 0 0 )峰的半高宽 (FWHM)为 0 4°~ 0 5°。对激光烧蚀团束的四极质谱分析表明烧蚀团束主要由Zn ,Se和 2Se组成 ,并由此推断ZnSe薄膜的二维生长模式。  相似文献   

11.
ZnS thin films were deposited from four different zinc salts on glass substrates by chemical bath deposition method. Different anions of zinc salts affect the deposition mechanism and growth rate, which influence the properties of the films significantly. The ZnS thin film deposited from ZnSO4 is smoother, thicker, more homogeneous and compact, nearly stoichiometric, comparing with the films deposited from Zn(CH3COO)2 and Zn(NO3)2, and ZnCl2. The scratch test of bonding force between ZnS film and substrate shows that the ZnS film deposited from ZnSO4 has the most excellent adhesion with the substrate. The presence of SO42− promotes heterogeneous ZnS thin film growth via ions by ions deposition, and the films deposited from Zn(CH3COO)2 and Zn(NO3)2 are formed via clusters by clusters deposition. XRD and HRTEM results show that cubic ZnS films are obtained after single deposition, and the grain size of ZnS thin film deposited from ZnSO4 for 2.5 h is 10 nm. The average transmission of all films is greater than 85% in the wavelength ranging from 600 to 1100 nm, and the transmission of films deposited from ZnSO4 or Zn(NO3)2 for 1.5, 2 and 2.5 h is greater than 85% in the wavelength varying from 340 to 600 nm, which can enhance the blue response. The band gaps of all ZnS thin films are in the range of 3.88–3.99 eV. After annealing treatment, the mechanical and optical properties of the ZnS thin film deposited from ZnSO4 are improved significantly.  相似文献   

12.
本文采用化学水浴法沉积CuxS薄膜,通过改变Cu元素比例研究其对碲化镉电池效率的影响。研究表明化学水浴法沉积的CuxS是非晶的,采用适当退火条件可以使其晶化,随着退火温度的提高,薄膜变得致密且结晶明显。CuxS薄膜厚度对电池性能有很大的影响,结果表明,随着CuxS薄膜厚度增加,电池性能先增加后减少。薄膜厚度为75nm时,CdS/CdTe电池性能最佳,达到了最高转化效率(η)为12.19%,填充因子(FF)为68.82%,开路电压(Voc)为820mV。  相似文献   

13.
Inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, I) is a promising material for developing novel electronic and optoelectronic devices. Despite the substantial progress that has been made in the development of large perovskite single crystals, the fabrication of high‐quality 2D perovskite single‐crystal films, especially perovskite with a low symmetry, still remains a challenge. Herein, large‐scale orthorhombic CsPbBr3 single‐crystal thin films on zinc‐blende ZnSe crystals are synthesized via vapor‐phase epitaxy. Structural characterizations reveal a “CsPbBr3(110)//ZnSe(100), CsPbBr3[?110]//ZnSe[001] and CsPbBr3[001]//ZnSe[010]” heteroepitaxial relationship between the covering CsPbBr3 layer and the ZnSe growth substrate. It is exciting that the epitaxial film presents an in‐plane anisotropic absorption property from 350 to 535 nm and polarization‐dependent photoluminescence. Photodetectors based on the epitaxial film exhibit a high photoresponsivity of 200 A W?1, a large on/off current ratio exceeding 104, a fast photoresponse time of about 20 ms, and good repeatability at room temperature. Importantly, a strong polarization‐dependent photoresponse is also found on the device fabricated using the epitaxial CsPbBr3 film, making the orthorhombic perovskite promising building blocks for optoelectronic devices featured with anisotropy.  相似文献   

14.
Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates SnO2:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8?nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a TiO2 stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, TiO2 films revealed insignificant changes in the optical spectra. The initial sheet resistance of the SnO2:F layer was 14?Ω/sq. The deposition of the top TiO2 layer (45?nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2?Ω/sq. In addition, the sheet resistance of the double-layer FTO/TiO2 transparent conductive oxide (TCO) electrode increased by 1?Ω/sq as a result of H+ plasma exposure. Regardless of the TiO2 film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15?nm thick) due to their high transparency, offering high resistance to aggressive H+ plasma conditions. In this paper we show that ~50-nm-thick TiO2 coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure.  相似文献   

15.
热蒸发紫外LaF3薄膜光学常数的表征   总被引:1,自引:1,他引:0  
常艳贺  金春水  李春  靳京城 《中国激光》2012,39(8):807002-163
薄膜光学常数的精确测定对于设计和制备多层薄膜具有重要意义。在JGS1型熔融石英基底上,采用热蒸发沉积方法制备了不同厚度的LaF3单层薄膜样品,利用光度法来获取弱吸收薄膜和基底的光学常数,计算得到其在185~450nm范围内折射率n和消光系数k的色散曲线。实验结果表明,当膜层厚度较薄时,LaF3薄膜折射率表现出不均匀性现象。随着薄膜厚度的增加,薄膜折射率不均匀性减小。在求解过程中选用不均匀模型后,拟合结果与实际测试光谱曲线吻合得很好,提高了薄膜光学常数的计算精度。  相似文献   

16.
The influence of two-step deposition on the electrical properties of sputtered (Ba,Sr)TiO3 thin films was investigated. BST thin films with thickness 40 nm were deposited by a simple two-step radio frequency-magnetron sputtering technique, where the BST thin film consisted of a seed layer and a main layer. The dielectric constant was strongly dependent on the thickness of seed layer, but there was no dependence on deposition temperature of the seed layer. For a 2 nm seed layer, the dielectric constants were higher by about 29% than those of single-step BST thin films due to higher crystallinity and the leakage current was nearly the same as that of a single-step sample in bias voltage from −2 to 2.5 V. However, an improvement of the dielectric constant was not observed for samples having above 4 nm thick seed layers. A 40 nm thick BST film with 2 nm thick seed layer deposited by a two-step method exhibited a SiO2 equivalent thickness of 0.385 nm and a leakage current density of 2.74 × 10−8A/cm2at+1.5V after post-annealing under an atmosphere of flowing N2 for 30 min at 750°C.  相似文献   

17.
Low-k dielectric carbon-doped silicon dioxide films created by Plasma Enhanced Chemical Vapor Deposition (PECVD) using a six-station sequential deposition system exhibit different glass transition behavior from films created by PECVD in a single deposition station. The enhanced glass transition temperature (Tg) for the PECVD thin films of a layer consisting of six sub-layer deposited in a six-station sequential deposition system to the Tg for films of a single layer deposited in a single deposition system is traced back to the introduced film interface effect inherent to the different deposition methods. Both types of PECVD thin films range in thickness from 50 to 1255 nm and show an increasing Tg with decreasing film thickness. The observed glass transition behavior for films with six sub-layers can be well explained by a theoretical model of thickness dependent Tg for multiple sub-layers obtained by modifying the currently existing theoretical model for the single layer thickness dependent Tg behavior, which explains the observed thickness dependent Tg for single layer PECVD thin films.  相似文献   

18.
采用射频磁控溅射法在石英衬底上制备了氧化镓(Ga2O3)薄膜.利用X射线衍射仪和紫外-可见-红外分光光度计分别对Ga2O3薄膜的晶体结构和光学带隙进行了表征,并在室温下测量了 Ga2O3薄膜的光致发光(PL)谱.结果表明:制备的Ga2O3薄膜呈非晶态.吸收边随着溅射气压的增加先蓝移后红移,光学带隙值范围为5.06~5.37 eV,溅射气压为1 Pa时,制备的Ga2O3薄膜具有最大的光学带隙.在325 nm激光激发下,400 nm附近和525 nm附近处出现与缺陷能级相关的发光峰.  相似文献   

19.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

20.
The aim of this work was to develop high quality of CuIn1−xGaxSe2 thin absorbing films with x (Ga/In+Ga)<0.3 by sputtering without selenization process. CuIn0.8Ga0.2Se2 (CIGS) thin absorbing films were deposited on soda lime glass substrate by RF magnetron sputtering using single quaternary chalcogenide (CIGS) target. The effect of substrate temperature, sputtering power & working pressure on structural, morphological, optical and electrical properties of deposited films were studied. CIGS thin films were characterised by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), Energy dispersive X-ray spectroscopy (EDAX), Atomic force microscopy (AFM), UV–vis–NIR spectroscopy and four probe methods. It was observed that microstructure, surface morphology, elemental composition, transmittance as well as conductivity of thin films were strongly dependent on deposition parameters. The optimum parameters for CIGS thin films were obtained at a power 100 W, pressure 5 mT and substrate temperature 500 °C. XRD revealed that thin film deposited at above said parameters was polycrystalline in nature with larger crystallite size (32 nm) and low dislocation density (0.97×1015 lines m−2). The deposited film also showed preferred orientation along (112) plane. The morphology of the film depicted by FE-SEM was compact and uniform without any micro cracks and pits. The deposited film exhibited good stoichiometry (Ga/In+Ga=0.19 and In/In+Ga=0.8) with desired Cu/In+Ga ratio (0.92), which is essential for high efficiency solar cells. Transmittance of deposited film was found to be very low (1.09%). The absorption coefficient of film was ~105 cm−1 for high energy photon. The band gap of CIGS thin film evaluated from transmission data was found to be 1.13 eV which is optimum for solar cell application. The electrical conductivity (7.87 Ω−1 cm−1) of deposited CIGS thin film at optimum parameters was also high enough for practical purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号