首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 658 毫秒
1.
基于Peck公式的藏区公路隧道施工地面沉降预测   总被引:2,自引:0,他引:2  
在隧道施工中结合现场地表下沉量测实测数据,利用Peck公式进行地表沉降计算,反分析法确定沉降槽曲线最大沉降量和沉降槽宽度及关键参数,并对拟合参数进行了检验。比较修正了沉降槽宽度计算经验公式,给出青藏高原东南部地区Peck公式中沉降槽宽度系数的初步建议值,验证了适合我国藏区具体地质条件与施工手段的公路隧道地表沉降预测模型。研究表明:Peck公式适用于青藏高原地区公路山岭隧道施工地面沉降预测,隧道进口浅埋段施工引起的地表沉降曲线基本符合高斯分布规律,进口段埋深较浅地表沉降槽宽度越大,埋深越大沉降槽宽度越小。  相似文献   

2.
基于广州市某分洪道顶管工程实测所得的地面沉降数据,探讨Peck公式在预测顶管施工引起地面沉降中的适用性,并借助函数拟合的方法,修正理论Peck公式下沉降曲线与实测沉降曲线的偏差。引入地表最大沉降修正系数α及沉降槽宽度修正系数β,通过推算和验证,当α和β分别介于0.229~0.809,0.176~0.324时,可利用修正Peck公式预测该地区下顶管施工引发地面沉降的大小。  相似文献   

3.
Peck公式广泛用于地铁隧道施工地表沉降计算,沉降槽宽度系数(i)是该公式的主要参数之一。目前各类沉降槽宽度系数(i)计算式多为现场实测数据或室内试验数据拟合求出,不能理论地反映出沉降槽宽度系数(i)与隧道埋深、地层土的性质、隧道半径的关系。从地表沉降曲线变形规律出发,假定地层在沉降曲线拐点处稳定状态发生变化,提出土体破坏剪切面通过沉降曲线的拐点的观点,基于太沙基极限平衡原理,求出了地表沉降槽宽度系数(i)计算式。两组工程实例的实测数据与计算沉降曲线的对比表明实测数据与预测结果吻合良好,误差较小,验证了提出的沉降槽宽度系数(i)计算式的准确性和适用性。  相似文献   

4.
陶思海 《路基工程》2021,(2):153-157
基于宁波地铁4号线类矩形盾构隧道区间段地表沉降实测数据,采用Peck公式并结合最小二乘法和回归分析方法,得到最大地表沉降实测值Smax_实测、最大地表沉降拟合值Smax_拟合、沉降槽宽度i、宽度系数K及地层损失率Vl统计结果,并分析了宽度系数K、地层损失率Vl以及修正系数α和β的分布规律,确定了建议值。  相似文献   

5.
依托上海市某矩形顶管工程实测数据,对超大断面矩形顶管施工引起的地表轴线沉降、剖面沉降和随顶进里程变化特点等进行了分析,提出了矩形顶管施工沉降控制要点。同时,结合实测数据探讨了Peck公式在超大断面矩形顶管沉降预测中的适用性,为同类工程沉降槽宽度系数、地层损失的取值提供经验参考。  相似文献   

6.
在地铁隧道施工过程中,引起地表沉降的因素较多,致使一些常用的地表沉降评价预计方法出现较大的偏差。为了研究由于地铁隧道施工而引起的地表沉降问题,以无锡地区地铁隧道开挖过程中大量地表沉降实测数据为基础,采用数学方法,引入两个修正系数,即地表最大沉降修正系数α和沉降槽宽度修正系数β,修正Peck公式中两个重要参数(沉降槽宽度系数K、地层土体损失率η),以适应无锡软土地区研究区段的工况。研究表明:地表最大沉降修正系数α介于0.5~0.9,沉降槽宽度修正系数β介于0.5~0.9,此时沉降槽宽度系数K介于0.40~0.70,底层土体损失率η介于0.4%~0.9%,得到修正后的Peck曲线与地表实测沉降数据更吻合。  相似文献   

7.
白丁伟 《路基工程》2021,(3):176-180
基于新建金甬铁路全线正线先开段千石岩隧道及陈家岭隧道的大量实测数据,通过采用线性回归分析法对实测数据进行拟合分析,修正了沉降槽宽度系数和最大沉降量系数。研究表明:沉降槽宽度系数取值0.6~0.9,最大沉降量系数取值0.15~0.45时,修正后的Peck公式较原Peck经验公式更吻合实测数据。  相似文献   

8.
张鹏  李志宏  曾聪  马保松 《隧道建设》2017,37(9):1120-1125
为了研究曲线顶管施工引起的地表变形,通过分析拱北隧道管幕工程曲线顶管现场实测数据,得出曲线顶管地表沉降槽的偏移曲线;在现有Peck和Loganathan地表变形计算公式的基础上,考虑曲线顶管与隧洞的相对位置对沉降槽偏移量的影响,得出经过沉降槽偏移修正的Peck和Loganathan地表变形预测公式。结果表明:1)曲线顶管施工引起的地表沉降槽曲线表现为非对称,最大沉降点可能出现在轨迹弯曲内侧,也可能偏向外侧;2)曲线顶管与隧洞相对位置引起的土体损失变化是造成沉降槽偏移的主要原因,相对位置与顶管穿越地层性质、顶进力、注浆压力和轨迹曲率半径等因素有关;3)修正的Peck公式可以较好地反映砂层和淤泥质土层中曲线顶管施工地面沉降槽偏移效应和最大沉降量。  相似文献   

9.
吴精义  叶新丰  余鹏  田腾跃 《隧道建设》2020,40(10):1408-1416
PBA工法工序转换复杂,易引起地表沉降,不同地层条件下的沉降规律难以掌握。尤其在含水粉细砂地层等不良地质条件下的地表沉降难以控制,对周边环境造成一定安全隐患。为研究粉细砂地层PBA车站沉降规律,通过调研北京地铁粉细砂地层PBA车站分布情况,基于监控量测数据分析不同降水条件下PBA车站地表沉降规律,并依据有限元方法进行计算验证,研究表明: 1)大于相应地表沉降值的发生概率与地表最大沉降值的关系符合正态分布,有效降水和未有效降水车站地表最大沉降值分别为-85.31~-93.29 mm、-126.16~-131.35 mm,由数据拟合得出地表最大沉降值超过-60 mm的概率分别为53.30%、74.96%; 2)沉降变形主要发生在导洞施工及扣拱施工阶段(约占90%),上导洞施工、下导洞施工、梁柱体系施工、扣拱施工阶段沉降比例约为4∶3∶1∶2; 3)沉降槽与Peck曲线趋近一致,沉降槽宽度系数在9.82~15.51 m,有效降水车站的沉降槽宽度系数比未有效降水车站的大3~5 m; 4)地层损失率普遍在0.56%~0.70%,沉降槽宽度参数受降水效果影响显著,普遍在0.51~0.89。研究结论可用于初步判断粉细砂层PBA车站的地表最大沉降。  相似文献   

10.
依托成都-贵阳高铁大方隧道工程,对高速铁路隧道下穿既有高速公路路堤影响进行研究,通过三维建模计算了路面的沉降分布规律,并采用Peck公式对横向沉降进行拟合分析,二者吻合良好,通过计算得到地层损失率vl为2.8%,沉降槽宽度系数K为0.86。  相似文献   

11.
为研究盾构隧道下穿施工对地表沉降影响,依托武汉地铁3号线区间盾构隧道工程,运用ANSYS有限元软件对盾构隧道在不同埋深条件下下穿路基和箱涵进行模拟,得到了不同埋深盾构隧道下穿施工对既有的路基和箱涵及对应地表沉降扰动规律,将对应的地表沉降与Peck公式预测的地表沉降进行对比分析,总结了盾构下穿施工与Peck公式预测的地表沉降之间异同。结果表明:①随着埋深的增加,盾构隧道下穿施工导致地表沉降减小,沉降槽宽度逐渐增加;②先行线对地表沉降的影响较后行线大;③盾构隧道下穿箱涵施工的地表最大沉降与Peck公式预测值十分接近,而隧道下穿路基的地表最大沉降比Peck公式预测值偏小。  相似文献   

12.
从宁波地铁1号,2号线现场实测数据的peck、Sagaseta公式及其公式修正的角度出发,揭示了滨海软土地铁单线和双线隧道盾构法施工地表横向沉降槽的形状、最大沉降量及其影响范围,分析了地表测点纵向累计沉降量与盾构推进距离之间的关系。结果表明:以修正的peck和Sagaseta公式拟合曲线的相关系数和拟合精度均有提高。通过ANSYS软件模拟了宁波滨海软土地铁单线和双线隧道盾构法施工地表横向和纵向沉降规律,并与实测数据结果进行了对比分析,模拟值大于实测值,模拟结果偏于保守。  相似文献   

13.
杨延栋  陈馈  李凤远  周建军 《隧道建设》2014,34(12):1143-1147
为了预测盾构隧道施工引起的地表横向沉降,针对狮子洋隧道陆地段DIK42+660断面地层,通过理论分析,利用Peck公式对该断面地表横向沉降量进行计算;通过数值模拟,利用ANSYS建立地层的有限元模型,并从数值模拟结果中获取地表单元的横向沉降量;最后通过与现场监测结果对比,对理论分析和数值模拟的地表横向沉降量预测方法进行评价。研究结果可为盾构隧道地表沉降的预测提供有效的方法。  相似文献   

14.
曹佳宁 《路基工程》2022,(1):112-116
依托南京地铁4号线一期工程徐金区间隧道下穿京沪高铁联络线及仙宁铁路项目,运用理论分析与现场变形观测相结合的方法,分析铁路路基在盾构隧道施工期及工后期的沉降规律.研究表明:Peck沉降理论计算的地表沉降极大值发生在两个隧道中心对应的地表处,随地层损失率的增加而增加,具对称性;与一般黏性土或者砂性土不同,软土地质条件下盾构...  相似文献   

15.
侯伟  韩煊  王法  尹宏磊 《隧道建设》2013,33(12):989-994
为揭示莫尔-库伦模型和修正剑桥模型在模拟盾构施工引起地层位移的不同,以能够反映施工工况的地层损失率为控制参数,采用2种模型模拟盾构施工引起的地层位移,从机制上分析2种模型计算结果的不同,并与Peck公式的计算结果和实测数据进行对比。主要结论如下: 1)莫尔-库伦模型计算的隧道中心的最大沉降大于实测数据和Peck公式的计算结果,计算的远离隧道中心处的位移为回弹性质。 2)修正剑桥模型计算的最大沉降与实测数据和Peck公式的计算结果基本吻合,但计算的沉降槽宽度偏大。  相似文献   

16.
杭州地区某盾构区间施工地表变形预测参数的分析与确定   总被引:1,自引:0,他引:1  
赵军 《隧道建设》2015,35(10):1003-1009
以杭州地铁某盾构区间隧道施工为背景,分别对盾构隧道上浮和盾构隧道水平2种工况建立计算模型,并计算盾构掘进施工引起的地表沉降,在每种模拟工况计算中取不同的地层损失率对地表沉降进行计算。将不同工况、不同地层损失率的计算结果与实测数据进行对比分析,并利用Peck公式计算结果进一步确认,以确定不同工况下的地层损失率:盾构隧道上浮工况下地层损失率约为1.9%;盾构隧道水平工况下地层损失率约为1%。以期为杭州和其他地区盾构施工引起的地表沉降预测提供参考。  相似文献   

17.
冯建霖 《隧道建设》2015,35(5):473-477
北京首都国际机场T3与T2航站楼之间的单层双跨连拱浅埋暗挖大断面隧道垂直下穿机场跑道,采用超长管幕下十导洞分步暗挖法施工。通过对隧道施工地表变形进行分析,得出以下结论:1)新建隧道施工地表最大沉降值平均为9.28 mm,控制变形情况良好,采用超长管幕保护浅埋暗挖施工技术切实可行;2)3个断面变形拟合得到的确定调节系数平均为0.951,地表变形符合Peck公式;3)变形拟合得到的K值平均为1.903,为北京地区常规数值的3~6倍,管幕的存在对新建隧道施工引起的地层变形具有阻隔及扩散作用;4)变形拟合得到的Vl值平均为0.201%,略低于北京地区常规施工方法水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号