首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用浸渍法制备出Cu-Ni/Al2O3催化剂。研究了催化剂还原温度及加氢反应条件对乙炔加氢反应的影响。结果表明,催化剂最佳还原温度为400℃。当最佳加氢反应条件为温度55℃,空速7 000 h-1,H2/C2H2(摩尔比)2.00时,乙炔转化率、乙烯选择性和收率分别为89.34%,84.48%,75.48%。  相似文献   

2.
以工业C10烯醛为原料,采用液相加氢法制备2-丙基-1-庚醇,考察了自主研发的C10烯醛加氢催化剂的性能,并与国外同类催化剂进行了对比。结果表明:随着反应温度升高,C10醇的总收率逐渐增大;当反应温度在150~170℃时,与进口催化剂相比,国产催化剂C10醇的总收率和对C10醇的选择性分别增加了1.0,0.5~1.0个百分点,C10烯醛转化率相同(均达到100%);在反应温度为150~160℃的条件下,国产催化剂连续运行2000 h后,性能稳定,C10醇的总收率为97.0%~99.1%,C10烯醛转化率最高可达99.4%。  相似文献   

3.
铜-铝氧化物催化剂用于马来酸二甲酯加氢工艺的研究   总被引:3,自引:0,他引:3  
在马来酸二甲酯加氢制备l,4—丁二醇的反应过程中,采用了新开发的铜—铝氧化物催化剂替代铜—铬氧化物催化剂,去除了污染严重的铬。在微型反应器中,对催化剂的还原和反应条件进行了考察,得到适宜的还原条件为:氢气气氛下,180℃,升温速率不大于l0℃/h,还原时间不小于40h。适宜反应条件为:温度194—204℃,压力6MPa,氢酯摩尔比(150一250):1,液时空速不大于0.75h^-1。20l0h稳定性试验结果表明,催化剂稳定性良好。  相似文献   

4.
采用等体积浸渍法将Ni分别负载在USY,ZSM-5,SBA-15,Al2O3载体上制备Ni质量分数为17%的负载型镍基催化剂,分别用X射线衍射、N2吸附-脱附、H2程序升温还原以及NH3程序升温脱附对催化剂进行表征,并考察其在氢气压力为4 MPa、反应温度为120 ℃、不同反应时间下催化1,4-丁炔二醇(BYD)加氢制1,4-丁烯二醇(BED)的加氢性能。结果表明:在基于不同载体的催化剂作用下BYD转化率存在较大差异;其他条件相同时,Ni/SBA-15作用下反应2.5 h时的BYD转化率达到97.8%,BED选择性为98.7%,且2-羟基四氢呋喃(HTHF)的选择性最低,这与Ni/SBA-15具有较大的比表面积和平均孔径、良好的活性金属组分镍分散性和较弱的酸性有关。  相似文献   

5.
采用沉积-沉淀法制备了不同焙烧温度的Au/TiO2系列催化剂,采用TEM、XPS、XRD、N2吸附-脱附、ICP以及NH3-TPD等手段表征了Au/TiO2系列催化剂的物化性能。考察了Au/TiO2系列催化剂在木质素模型化合物(愈创木酚)加氢脱氧反应中的催化性能,及反应条件对Au/TiO2-1(焙烧温度为350 ℃)催化愈创木酚加氢脱氧反应性能的影响,并探讨了反应机理。结果表明,当焙烧温度由350 ℃升至650 ℃,Au/TiO2催化剂中Au颗粒平均粒径从2.7 nm增至7.9 nm,晶型保持为锐钛矿型,催化剂比表面积由90 m2/g减至49 m2/g;新鲜和反应后催化剂中的Au均以金属态存在。在愈创木酚加氢脱氧反应中,Au/TiO2催化剂对酚类产物有很高的选择性。随着催化剂焙烧温度增加,其活性逐渐降低,产物中酚类物质的选择性基本不变;当催化剂上Au颗粒平均粒径小于6 nm时,出现了新的反应路径,即愈创木酚上甲氧基中的甲基加氢生成甲烷。不同反应温度与氢气压力的结果表明,Au/TiO2催化剂能够高选择性地断裂1个C-O键,而苯环不会被饱和,酚类产物的分布基本没有变化。催化剂重复使用2次性能稳定。  相似文献   

6.
选择Ti/Al载体,负载活性金属钯,在温度140℃、压力0.54MPa、氯化氢气体空速2500h-1、氢/炔摩尔比2.5、进料乙炔质量分数为2×10-3时,乙炔转化率大于98%(平均值99.19%),乙烯选择性大于50%(平均值为63.95%).该催化剂性能稳定.  相似文献   

7.
在24万t/a乙烯装置碳二(C_2)加氢侧线上进行了两段加氢反应的工艺条件优化模拟试验,考察了反应器入口温度、氢炔比(摩尔比,下同)等工艺条件对乙炔转化率、乙烯选择性、绿油生成量及催化剂长周期运行的影响。结果表明,在一段反应器入口温度为45℃,氢炔比为1.2,二段反应器入口温度为55℃,氢炔比为2.0的适宜条件下,催化剂运行1 000 h后,乙炔转化率可达到100%,乙烯总选择性可达到60%以上。  相似文献   

8.
以γ-Al2O3为载体、贵金属Ru为活性组分,制备了Ru基单金属催化剂Ru/Al2O3,并以2,2,4,4-四甲基-1,3-环丁二酮(TMCB)为原料,在高压反应釜加氢反应评价装置上进行催化加氢合成2,2,4,4-四甲基-1,3-环丁二醇(CBDO)的工艺研究,并考察了相关工艺条件对加氢反应TMCB转化率和CBDO选择性的影响。实验结果表明,适宜反应条件为反应温度120℃、反应时间2 h、H2压力4 MPa,在此条件下,TMCB的转化率为100%,CBDO的选择性为70.4%,顺反异构比为1.03。  相似文献   

9.
乙炔在磁稳定床中的选择性加氢研究   总被引:1,自引:0,他引:1  
 制备了一种磁性Pd/Al2O3催化剂,采用磁稳定床考察了活性组分负载量、反应条件及CO浓度对乙炔加氢反应性能的影响。结果表明,当反应温度80℃、反应压力1.5MPa、空速9000h-1、磁场强度(H)25kA/m时,乙炔转化率为100%,乙烯选择性可达81%,具有优良的乙炔加氢活性和乙烯选择性,优于相同反应条件下的进口催化剂;250h稳定性实验结果表明,磁性Pd/Al2O3催化剂具有良好的初活性和乙烯选择性,催化剂性能稳定。  相似文献   

10.
以Al2O3为载体,采用特殊的化学镀法制备了Pd负载型碳二馏分选择加氢催化剂。对催化剂表面进行X射线光电子能谱和扫描电子显微镜表征显示,活性组分Pd在催化剂表面以单质形式存在,在碳二馏分加氢反应前无须高温焙烧和还原,且Pd富集分布在催化剂表面壳层的10~20μm之间,与浸渍法制备的Pd负载型催化剂相比,Pd层更薄,有利于提高Pd的利用率。在气态空速15000h-1、氢气与乙炔摩尔比1.5、反应温度130℃的条件下,以碳二馏分选择加氢反应考察了催化剂的性能,评价结果表明,以化学镀法制备的HXD10催化剂的性能大大优于浸渍法制备的SAM20催化剂(两种催化剂中Pd质量分数均为0.035%),HXD催化剂上乙炔转化率和乙烯选择性分别达到91%和83%。  相似文献   

11.
以铜、锌为活性组分,采用共沉淀法制备出铜基催化剂CuO-ZnO-Al2O3 并以2,2,4,4-四甲基-1,3-环丁二酮(TMCB)为原料,CuO-ZnO-Al2O3为催化剂,在小型固定床加氢反应评价装置上进行催化加氢合成2,2,4,4-四甲基-1,3-环丁二醇(TMCD)的工艺研究,考察了工艺条件对加氧反应TMCB转化率和TMCD选择性的影响.结果表明,适宜的反应条件为:反应温度180℃,反应压力4.0 MPa,H2/TMCB(摩尔比)150,TMCB质量空速4h-1.在此条件下,TMCB的转化率达到96.1%,TMCD的选择性为95.5%.  相似文献   

12.
采用共沉淀方法制备Cu-Al、Cu-Mg-Al、Cu-Zn-Al水滑石作为草酸二甲酯加氢制乙二醇新型催化剂,并经XRD和IR进行了表征。在压力为2.0 MPa,氢酯摩尔比50:1,氢气体积空速3 000h~(-1),反应温度180~210℃条件下,草酸二甲酯加氢制乙二醇催化剂的评价结果表明,Cu-Mg-Al水滑石催化剂具有优良的催化性能,草酸二甲酯的转化率高达99.5%,选择性为100%;另外,Cu-Zn-Al水滑石催化剂也同样显示出良好的催化活性,草酸二甲酯的转化率及乙二醇的选择性分别达到93.8%和97.5%,远高于浸渍法制备的Cu/SiO_2、Cu/Al_2O_3(Cu 20%)为催化剂。  相似文献   

13.
设计了乙烯选择性齐聚连续化反应装置,将硅胺基桥联双膦型配体铬配合物(PNSiP/CrCl3(THF)3)、改性甲基铝氧烷(MMAO)组成催化体系,考察了其催化乙烯选择性齐聚连续化反应性能,并对该反应动力学进行研究。结果表明:当反应温度为60 ℃、乙烯压力为5.0 MPa、氢气分压为0.2 MPa、连续化反应20 h时,该催化体系的催化活性可达46.13×106 g/(mol Cr·h);产物中1-己烯和1-辛烯的总选择性最高达到88.52%,固体产物聚乙烯(PE)质量分数为0.09%。PNSiP/Cr(Ⅲ)/MMAO催化体系在乙烯选择性齐聚连续化反应中具有催化活性高、副产物(甲基环戊烷+亚甲基环戊烷)少、固体低聚物少、可实现长周期运行的优点。对PNSiP/Cr(Ⅲ)/MMAO催化乙烯选择性齐聚连续化反应动力学方程进行拟合计算,得到该反应对主催化剂浓度的反应级数为1.32、对乙烯压力的反应级数为1.92;当主催化剂摩尔浓度为7.09 μmol/L、反应温度为40~60 ℃、压力为5.0 MPa时,该反应的表观活化能为109.7 kJ/mol。  相似文献   

14.
乙炔选择加氢催化剂该专利公开了一种含有La,Ti,Nb,K,Si的负载Pd的乙炔选择加氢催化剂及其制备方法。该催化剂具有较高的乙烯选择性(甚至在较低的反应温度下),含有0.05%~2.0%(基于催化剂的质量分数)的Pd,同时还含有一种或两种选自La,Ti,Nb,K,Si的金属元素。该催化剂的制备方法:(1)将载体浸渍在一种含Pd的溶液中,然后干燥、焙烧,得到催化剂A;(2)再把第二种金属元素(如果必需,还可增加第三种金属元素)浸渍到催化剂A上,然后干燥、焙烧,得到催化剂B;(3)将催化剂B在200~600℃下,用氢气还原1~5h,得到最终的催化剂。/EP1611072,2006-01-04…  相似文献   

15.
采用尿素均匀沉淀法制备了Cu/SiO2催化剂,用H2-TPR、XRD和N2吸附-脱附等技术对其进行了表征;将Cu/SiO2催化剂用于催化乙酸乙酯加氢制备乙醇的反应,考察了反应温度、反应压力、反应物配比和液态空速对乙酸乙酯加氢反应活性和选择性的影响。表征结果显示,Cu/SiO2催化剂具有较大的比表面积和较低的起始还原温度。实验结果表明,适宜的反应条件为:反应温度220℃、反应压力3.0MPa、氢气与乙酸乙酯的摩尔比60、液态空速1.0h-1,在此条件下,乙酸乙酯转化率可达96.2%,乙醇选择性为97.8%。  相似文献   

16.
《石油化工》2006,35(10)
二烯烃和乙炔选择性加氢的工艺和催化剂该专利公开了混合碳氢化合物物流中二烯烃和乙炔在高温分解蒸汽裂解炉中选择性加氢的方法。在该裂解炉中,二烯烃和乙炔在催化剂作用下进行一步加氢反应。催化剂包括:(A)质量分数1%~30%的活性组分(基于催化剂质量)(如镍或镍与铜、铼、钯、锌、金、银、镁、钼、钙、铋中一种或多种元素的混合物);(B)一种载体,其BET比表面积为1~100m2/g,孔体积为0.2~0.9mL/g,平均孔径为11~45nm。该工艺使二烯烃和乙炔发生氢化反应生成烯烃,轻组分和重组分产品中均没有乙烯和丙烯损失,省略了对重馏分的进一步加工工序。…  相似文献   

17.
以鳞片石墨为原料,通过Hummer法合成氧化石墨(GO),然后与拟薄水铝石溶液充分混合后还原,得到还原氧化石墨烯 氧化铝复合载体(rGO-Al2O3),再采用浸渍法制备出负载型Ni2P/rGO-Al2O3催化剂。通过扫描电子显微镜、物理吸附仪和X射线衍射仪等手段对催化剂进行了表征。以苯甲醛加氢脱氧(HDO)制甲苯为反应体系,在反应温度300℃、压力2.5 MPa、反应时间4 h条件下,对比了rGO-Al2O3复合载体与单独rGO或Al2O3负载的Ni2P催化剂的加氢脱氧性能。结果表明,rGO-Al2O3具有发达的孔结构和较大的表面积,Ni2P/rGO-Al2O3催化剂展现出良好的催化活性和选择性。  相似文献   

18.
在石油路线生产乙烯过程中,乙烯产品中通常含有微量乙炔,乙炔的存在会影响乙烯转化制聚乙烯的过程。由于分离困难,通常需要借助钯基催化剂将微量乙炔进行选择性加氢制成乙烯(而不是继续加氢制成乙烷)。为了寻找便宜的替代品,德国马普固体物理化学研究所和马普学会Fritz Haber研究所开发出一种铁-铝催化剂,据称,这种催化剂的性能与钯基催化剂一样,但成本大大降低。  相似文献   

19.
以鳞片石墨、尿素为原料,采用水热法制备了氮掺杂还原氧化石墨烯(N-rGO)载体,然后采用浸渍法制备了不同碱性组分改性的Ni/N-rGO催化剂,将其用于苯酚选择性加氢制备环己酮的反应。并通过N2吸附-脱附、XRD、FT-IR、SEM和EDS等手段对Ni/N-rGO催化剂进行表征。结果表明:与添加Cu、Fe、Na组分相比,添加组分Ce后Ni/N-rGO催化剂的比表面积和孔径均显著增大,可有效促进金属Ni在载体表面均匀分散,提高催化剂的活性;组分Ce的添加减弱了石墨烯表面含氧官能团的酸性质,有利于提高环己酮的选择性;在反应温度150 ℃、反应压力0.4 MPa、反应时间2.0 h、催化剂用量0.2 g的条件下,Ce/Ni摩尔比0.2时制备的Ni-Ce/N-rGO催化剂作用下,苯酚转化率为95.2%,环己酮选择性为72.6%。  相似文献   

20.
采用浸渍法制备了一系列负载于γ-Al2O3上的Ni基双金属催化剂,考察助剂金属(Mo,Co,Ce)对Ni基催化剂加氢脱氧反应性能的影响。采用X射线衍射、低温N2物理吸附、NH3程序升温脱附、H2程序升温还原、X射线光电子能谱等表征手段对催化剂进行表征。以正丁醇为模型化合物,在固定床微型反应装置上对催化剂的加氢脱氧性能进行评价,结果表明助剂Ce对催化剂加氢脱氧反应性能的促进作用最为显著,在210 ℃时基本实现正丁醇的完全转化,助剂Mo对C-O键的活化能力更强,对产物正丁烷的选择性明显高于其余助剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号