首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用BIOME-BGC模型和树木年轮数据模拟1952-2008年华北地区典型油松林生态系统净初级生产力(NPP)动态,探究了树木径向生长和NPP对区域气候变暖的响应以及未来气候情景下油松林生态系统NPP动态变化.结果表明:1952-2008年,研究区油松林生态系统NPP波动于244.12 ~645.31 g C·m-2·a-1,平均值为418.6 g C·m-2·a-1.5-6月的平均温度和上年8月至当年7月的降水是限制该地区油松径向生长和油松林生态系统NPP的主要因子.研究期间,随着区域暖干化趋势的加强,树木径向生长和生态系统NPP均呈下降趋势.未来气候情景下,NPP对温度和降水的单独和复合变化的响应为正向.CO2浓度升高有利于油松林生态系统NPP的增加,CO2的施肥效应使NPP增加16.1%.在生态系统和区域水平,树木年轮是一种理想的指示生态系统动态变化的代用资料,可以检验和校正包括BIOME-BGC模型在内的各种生态系统过程模型.  相似文献   

2.
应用BIOME-BGC模型和树木年轮数据模拟1952-2008年华北地区典型油松林生态系统净初级生产力(NPP)动态,探究了树木径向生长和NPP对区域气候变暖的响应以及未来气候情景下油松林生态系统NPP动态变化.结果表明:1952-2008年,研究区油松林生态系统NPP波动于244.12~645.31 g C·m-2·a-1,平均值为418.6 g C·m-2·a-1.5-6月的平均温度和上年8月至当年7月的降水是限制该地区油松径向生长和油松林生态系统NPP的主要因子.研究期间,随着区域暖干化趋势的加强,树木径向生长和生态系统NPP均呈下降趋势.未来气候情景下,NPP对温度和降水的单独和复合变化的响应为正向.CO2浓度升高有利于油松林生态系统NPP的增加,CO2的施肥效应使NPP增加16.1%.在生态系统和区域水平,树木年轮是一种理想的指示生态系统动态变化的代用资料,可以检验和校正包括BIOME-BGC模型在内的各种生态系统过程模型.  相似文献   

3.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

4.
我国陆地植被净初级生产力变化规律及其对气候的响应   总被引:14,自引:4,他引:10  
在GIS系统的支持下,利用卫星遥感资料和地面气象观测资料,构建了基于光能利用率的植被净初级生产力(NPP)遥感模型,估算了我国陆地1982—2000年1—12月植被NPP,分析了1982—2000年我国不同植被类型NPP的季节性和年际性变化规律,基于像元空间尺度讨论了植被NPP对气候的响应关系.结果表明,我国植被NPP年内季节性变化规律明显;我国主要植被类型年NPP在1982—2000年基本呈上升趋势,增长幅度最大的是落叶针叶林,增长幅度最小的是草地;1982—2000年,NPP年际间波动最大的植被类型是常绿阔叶林,年际间波动最小的植被类型是草地.通过NPP对气候因子(降水、温度)变化的响应分析表明,我国降水对植被NPP季节性变化的驱动作用高于温度,气候因子(降水、温度)对北方植被NPP季节性变化的驱动作用高于南方;我国气候因子(降水、温度)对NPP年际变化的驱动作用(强度、方向)随季节 及纬度的不同而不同.  相似文献   

5.
黄土高原马栏林区辽东栎更新特性研究   总被引:4,自引:0,他引:4  
田丽  王孝安  郭华  朱志红   《广西植物》2007,27(2):191-196
研究了黄土高原马栏林区主要植被类型中的辽东栎幼苗的数量特征,更新层幼苗、幼树的实生和萌生特性及其辽东栎在垂直结构上的数量分布。结果表明:(1)辽东栎幼苗在黄土高原马栏林区分布广泛且数量充足。不同的植被类型中辽东栎种群表现出不同的大小级结构,在油松—辽东栎混交林、油松林和辽东栎林中辽东栎种群的幼苗、幼树和成树均占一定的比例,而在油松—白桦混交林、白桦林、山杨林和山杨—白桦混交林中辽东栎种群则以幼苗和幼树为主。表明辽东栎种群在该地区植被的发展过程中将产生重要的作用。(2)辽东栎在这一地区是由实生和萌生的个体混合组成的。在各种植被类型中实生植株的密度都高于萌生植株,辽东栎种群的更新在该地区可能主要是通过实生植株来完成的,即辽东栎实生植株在更新过程中起重要的作用。但萌生植株作为辽东栎顺利通过瓶颈的一种手段,作为辽东栎种群繁衍和稳定的一种途径,在辽东栎种群的更新中也起着一定的作用。  相似文献   

6.
Quantifying relationships between plant functional traits and abiotic gradients is valuable for evaluating potential responses of forest communities to climate change. However, the trajectories of change expected to occur in tropical forest functional characteristics as a function of future climate variation are largely unknown. We modeled community level trait values of Costa Rican rain forests as a function of current and future climate, and quantified potential changes in functional composition. We calculated per‐plot community weighted mean (CWM) trait values for leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen (N) and phosphorus (P) content, and wood basic specific gravity (WSG), for tree and palm species in 127 0.25 ha plots. We modeled the response of CWM traits to current temperature and precipitation gradients using generalized additive modeling. We then predicted and mapped CWM traits values under current and future climate, and quantified potential changes under a global warming scenario (RCP8.5, year 2050). We calculated the area within the multi trait functional space occupied by forest plots under both current and future climate, and determined potential changes in functional space occupied by forest plots. Overall, precipitation predicted CWM traits better than temperature. Models indicated increases in CWM SLA, N and P, and a decrease in CWM LDMC under climate change. Lowland forest communities converged on a single direction of change towards more acquisitive CWM trait values, indicating a change in forest functional composition resulting from a changed climate. Functional space occupied by forest plots was reduced by 50% under the future climate. Functional composition changes may have further effects on forests ecosystem services. Assessing functional trait spatial‐gradients can help bridge the gap between species‐based biogeography and biogeochemical approaches to strengthen biodiversity and ecosystem services conservation efforts.  相似文献   

7.
The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the response of vegetation activity, e.g., forest greenness and tree growth, to climate change, we investigated spatiotemporal variations in two independent data sets containing the dendroecological information for this region over the past 30 years. These indices are the normalized difference vegetation index (NDVI3g) and the tree‐ring width index (RWI), both of which showed significant spatial variability in past trends and responses to climate changes. These trends and responses to climate change differed significantly in the ecosystems of the circumarctic (latitude higher than 67°N) and the circumboreal forests (latitude higher and lower than 50°N and 67°N, respectively), but the way in which they differed was relatively similar in the NDVI3g and the RWI. In the circumarctic ecosystem, the climate variables of the current summer were the main climatic drivers for the positive response to the increase in temperatures showed by both the NDVI3g and the RWI indices. On the other hand, in the circumboreal forest ecosystem, the climate variables of the previous year (from summer to winter) were also important climatic drivers for both the NDVI3g and the RWI. Importantly, both indices showed that the temperatures in the previous year negatively affected the ecosystem. Although such negative responses to warming did not necessarily lead to a past negative linear trend in the NDVI3g and the RWI over the past 30 years, future climate warming could potentially cause severe reduction in forest greenness and tree growth in the circumboreal forest ecosystem.  相似文献   

8.
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree‐ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree‐ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.  相似文献   

9.
杨凤萍  胡兆永  侯琳  蔡靖  崔翠  张硕新 《生态学报》2014,34(22):6489-6500
以秦岭火地塘林区油松(Pinus tabulaeformis)和华山松(Pinus armandi)林为研究对象,以其生物量及树高-胸径模型为基础,运用树木年轮宽度方法推算出1973年至2011年生物量和生产力年际动态,并通过相关分析和多元逐步回归分析探讨了油松和华山松林乔木层净生产力与温度、降水之间的关系。结果显示,该林区油松林和华山松林乔木层生物量39a间增长迅速,分别从1973年的15.32 t/hm2和7.53 t/hm2增长到2011年的175.97 t/hm2和130.98 t/hm2,平均年净生产力分别为4.18 t hm-2a-1和3.20 t hm-2a-1,油松林乔木层生物量和生产力均高于华山松林;气候分析表明年净生产力与降水关系不明显,与温度关系较为密切,随气温升高呈波动上升趋势:单月气候因子中上年7月温度、当年7月温度与油松林乔木层净生产力显著正相关,上年7月温度与华山松林乔木层净生产力显著正相关;油松林乔木层净生产力动态变化主要受1—7月平均温度影响,华山松林主要受5—7月平均温度影响;油松林生产力与温度因子的相关性高于华山松林。两种林型的生物量和生产力差异是由油松和华山松生物学特性所致。  相似文献   

10.
Because model predictions at continental and global scales are necessarily based on broad characterizations of vegetation, soils, and climate, estimates of carbon stocks and fluxes made by global terrestrial biosphere models may not be accurate for every region. At the regional scale, we suggest that attention can be focused more clearly on understanding the relative strengths of predicted net primary productivity (NPP) limitation by energy, water, and nutrients. We evaluate the sources of variability among model predictions of NPP with a regional-scale comparison between estimates made by PnET-II (a forest ecosystem process model previously applied to the northeastern region) and TEM 4.0 (a terrestrial biosphere model typically applied to the globe) for the northeastern US. When the same climate, vegetation, and soil data sets were used to drive both models, regional average NPP predictions made by PnET-II and TEM were remarkably similar, and at the biome level, model predictions agreed fairly well with NPP estimates developed from field measurements. However, TEM 4.0 predictions were more sensitive to regional variations in temperature as a result of feedbacks between temperature and belowground N availability. In PnET-II, the direct link between transpiration and photosynthesis caused substantial water stress in hardwood and pine forest types with increases in solar radiation; predicted water stress was relieved substantially when soil water holding capacity (WHC) was increased. Increasing soil WHC had little effect on TEM 4.0 predictions because soil water storage was already sufficient to meet plant demand with baseline WHC values, and because predicted N availability under baseline conditions in this region was not limited by water. Because NPP predictions were closely keyed to forest cover type, the relative coverage of low- versus high-productivity forests at both fine and coarse resolutions was an important determinant of regional NPP predictions. Therefore, changes in grid cell size and differences in the methods used to aggregate from fine to coarse resolution were important to NPP predictions insofar as they changed the relative proportions of forest cover. We suggest that because the small patches of high-elevation spruce-fir forest in this region are substantially less productive than forests in the remainder of the region, more accurate NPP predictions will result if models applied to this region use land cover input data sets that retain as much fine-resolution forest type variability as possible. The differences among model responses to variations in climate and soil WHC data sets suggest that the models will respond quite differently to scenarios of future climate. A better understanding of the dynamic interactions between water stress, N availability, and forest productivity in this region will enable models to make more accurate predictions of future carbon stocks and fluxes. Received 19 June 1998; accepted 25 June 1999.  相似文献   

11.
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species‐specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model‐data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.  相似文献   

12.
陈智 《应用生态学报》2019,30(5):1625-1632
中国东北森林生态系统是重要的碳汇功能区,也是对环境变化响应的敏感区,分析其植被生产力和碳素利用效率的变化特征及其对气候变化的响应对于区域碳收支的准确评估和预测具有重要意义.本研究利用MODIS的长期监测数据,结合植被类型分布数据,对中国东北森林生态系统2000—2015年生产力(净初级生产力NPP、总初级生产力GPP)和碳素利用率(NPP/GPP)时空变化特征进行分析.结果表明: 研究期间,东北森林生态系统平均NPP和GPP分别为346.4和773 g C·m-2·a-1,平均NPP/GPP为0.45.不同森林类型的NPP和GPP依次为针阔混交林>落叶阔叶林>针叶林,NPP/GPP在不同森林类型间无显著差异.NPP和GPP呈现出东南高、西北低的空间分布特点.2000—2015年间,东北森林生态系统NPP、GPP和NPP/GPP呈波动增加趋势,固碳能力逐步增强.NPP、GPP和NPP/GPP的变化趋势和变化速率表现出空间差异性,在大兴安岭南部地区显著增加,在大兴安岭北部地区显著下降,其余区域呈微弱增加趋势.与气候因子的相关性分析表明,年降水量的增加是驱动东北森林生态系统NPP、GPP和NPP/GPP波动增加的主要因素.  相似文献   

13.
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China's forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10‐km‐resolution gridded historical data sets (tropospheric O3 concentrations, climate variability/change, and other environmental factors such as land‐cover/land‐use change (LCLUC), increasing CO2 and nitrogen deposition), we conducted nine simulation experiments to: (1) investigate the temporo‐spatial patterns of NPP and NCE in China's forest ecosystems from 1961–2005; and (2) quantify the effects of tropospheric O3 pollution alone or in combination with climate variability and other environmental stresses on forests' NPP and NCE. Results China's forests acted as a carbon sink during 1961–2005 as a result of the combined effects of O3, climate, CO2, nitrogen deposition and LCLUC. However, simulated results indicated that elevated O3 caused a 7.7% decrease in national carbon storage, with O3‐induced reductions in NCE (Pg C year?1) ranging from 0.4–43.1% among different forest types. Sensitivity experiments showed that climate change was the dominant factor in controlling changes in temporo‐spatial patterns of annual NPP. The combined negative effects of O3 pollution and climate change on NPP and NCE could be largely offset by the positive fertilization effects of nitrogen deposition and CO2. Main conclusions In the future, tropospheric O3 should be taken into account in order to fully understand the variations of carbon sequestration capacity of forests and assess the vulnerability of forest ecosystems to climate change and air pollution. Reducing air pollution in China is likely to increase the resilience of forests to climate change. This paper offers the first estimate of how prevention of air pollution can help to increase forest productivity and carbon sequestration in China's forested ecosystems.  相似文献   

14.
为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000—2019年吉林省落叶松林近20年的净初级生产力,并采用线性回归趋势分析、变异系数、Hurst指数和相关性分析法对其时空变化、稳定性及其与气候因子的相关关系进行了分析。结果表明:(1)2000—2019年吉林省落叶松林年均净初级生产力(NPP)为592 g C m-2 a-1,年均增长率为2.81%,随时间推移呈现波动增长的趋势(β=14.55,R~2=0.784,P<0.01)。(2)NPP变异系数为0.07—2.33,均值为0.48,除幼龄林外,整体波动较小。Hurst指数介于0.441—0.849之间,均值为0.612,未来吉林省落叶松林NPP呈增加趋势。(3)吉林省落叶松林NPP存在明显的空间异质性,北部和南部区域NPP较高,是近20年NPP增长较快的区域。(4)2000—2019年吉林省落叶松林年均NPP与年总降水、生长季...  相似文献   

15.
兴安落叶松林碳平衡和全球变化影响研究   总被引:30,自引:9,他引:21  
利用CENTURY模型模拟兴安落叶松林的C循环并探讨全球变化对其C循环的影响,结果表明,兴安落叶松林是一个C汇,年净吸收C2.65t.hm^-2,气候变化和大气CO2浓度增加将对北方森林的生长有利,使其净吸收C的能力增强,温度上升2℃时,兴安落叶松林的植物总生物量和生产力均增加,而土壤C含量降低,降水减少20%比降水增加20%时其植物总生物量,生产力和土壤C含量变化的幅度大,说明温度是大兴安岭地区森林生长的主要限制因子。  相似文献   

16.
Aim A regional model of vegetation dynamics was enhanced to include biogeochemical cycling of nitrogen and was then applied to a forest transect in east China (FTEC) in order to investigate the responses of the transect to possible global change. Location Eastern China. Methods Biomass and nitrogen concentration of green and nongreen portions of vegetation, moisture contents of three soil layers, and total and available soil nitrogen are included as state variables in the enhanced model. The model was parameterized and validated against field observations of biomass, productivity, plant and soil nitrogen concentration, nitrogen uptake, a vegetation index derived from satellite remote sensing and digital maps of vegetation and soil distributions along a forest transect in eastern China (FTEC). The model was applied to FTEC in order to investigate the responsive characteristics of the ecosystems to global climatic change. Scenarios of climate change under doubled CO2 produced by seven general circulation models (GCM) were used to drive the model. Results The simulations indicated that the model is capable of simulating accurately potential vegetation distribution and net primary productivity under contemporary climatic conditions. The simulations for GCM‐projected future climate scenarios with doubled atmospheric CO2 concentration predicted that broadleaf forests would increase, but conifer forests, shrubs and grasses would decrease; and that deciduous forests would have the largest relative increase, but evergreen shrubs would have the largest decrease. Conclusions The overall effects of doubling CO2 and climatic changes on FTEC were to produce an increased net primary productivity (NPP) at equilibrium for all seven GCM scenarios. The inclusion of nitrogen dynamics in the model imposes more constraint on the responses of FTEC to climatic change than the previous version of the model without nitrogen dynamics. Temperature exerts a stronger control on NPP than precipitation, as indicated by the negative correlations between NPP and temperature. The southern portion of FTEC, at latitudes less than 33 °N, show much larger increases in annual NPP than in the north. However, the predicted range of NPP increases is much larger in the north than in the south.  相似文献   

17.
β多样性是生态学研究的热点论题,相同的β多样性格局可能由不同的生态过程所决定。该文通过构建零假说模型和典范变异分解的方法,比较了黄土高原油松人工林(Form.Pinus tabulaeformis)和辽东栎天然林(Form.Quercus wutaishanica)林下植物群落β多样性,确定了环境过滤和扩散限制在β多样性形成过程中的相对重要性。结果表明:(1)油松人工林和辽东栎天然林的林下群落均具有相似的β多样性大小,均呈现明显的种内聚集过程。(2)环境和空间共同解释了两种林型林下物种组成的较大变化(草本层[E+S]为33%~45%;灌木层[E+S]为21%~35%),且主要以环境解释量为主(包括纯环境变量[E|S]和空间化的环境变量[E∩S])。(3)油松人工林和辽东栎天然林林下群落β多样性形成的不同过程主要体现在生境异质性差异以及特定的环境因子间,例如,海拔梯度、枯落物厚度以及土壤养分(速效氮和速效钾)是引起两种林型林下物种差异的显著环境因子。综上结果认为,黄土高原的油松人工林和辽东栎天然林的群落构建均由确定性的环境过滤为主导,但两种林型的环境过滤过程并不一样,主要表现为生境异质性的差异和不同的环境限制因子。对于黄土高原区域生态环境建设,首先应该保证不同群落的生境异质性,同时不能忽视扩散限制及其与生境异质性二者交互作用对β多样性的影响。  相似文献   

18.
中国北方林生产力变化趋势及其影响因子分析   总被引:12,自引:0,他引:12  
森林生产力是反映森林固碳能力的重要指标,是进行碳循环研究的重要环节。用模拟生态系统生物地球化学循环的CENTURY模型,模拟中国北方林(兴安落叶松林)近35a来的生产力动态,用3种趋势分析方法,检验了其变化趋势,并用多元线性回归模型分析了中国北方林生产力的年际波动与气温降水年际波动的关系,以及气温和降水对我国北方林生产力的影响程度。结果表明:中国北方林生产力呈增加的趋势,平均年增长率为0.34%;气温与森林生产力呈显著负相关,对森林生产力的贡献因子为4.0977;降水与森林生产力呈弱的正相关,其对森林生产力的贡献因子为0.3902。从而说明近35a来森林生产力的增加除了受气温降水等非生物因素的影响外,还受其它因素的影响;另外说明以气候变暖为标志的全球变化会对森林生产力产生重要的影响。  相似文献   

19.
对现有的区域植被动态模拟模型进行了改进,使之包含了土地利用分布格局对植被和生态系统相关过程的影响。改进后的模型被用地研究中国东部南北样带(NSTEC)植被和净第一性生产力对未来气候变化的响应。模拟结果显示土地利用格局对未来气候条件下植被分布的变迁和生产力形成过程有非常显著的影响。与没有土地利用约束的情形相比较,土地利用作为限制条件缓减了植被类型之间的竞争,从而减少了模拟的样带区域内常绿阔叶林,但增加了模拟灌木和草地的分布。土地利用约束使得模拟得到的当前条件下的净第一性生产力更为接近实际情况,且未来气候条件下的生产力改变量更为可信。对未来CO2倍增条件下7个大气环流模型预测的气候情景的模拟结果表明:落叶阔叶林将显著增加,但针叶林、灌木和草原的分布将下降。未来气候条件下NSTEC样带的净第一性生产力总量将增加。预测样带北部的净第一性生产力的变化范围大于样带南部。温度变化比降水变化对样带的生产力具有更强的控制。  相似文献   

20.
对现有的区域植被动态模拟模型进行了改进,使之包含了土地利用分布格局对植被和生态系统相关过程的影响.改进后的模型被用于研究中国东部南北样带(NSTEC)植被和净第一性生产力对未来气候变化的响应.模拟结果显示土地利用格局对未来气候条件下植被分布的变迁和生产力形成过程有非常显著的影响.与没有土地利用约束的情形相比较,土地利用作为限制条件缓减了植被类型之间的竞争,从而减少了模拟的样带区域内常绿阔叶林,但增加了模拟灌木和草地的分布.土地利用约束使得模拟得到的当前条件下的净第一性生产力更为接近实际情况,且未来气候条件下的生产力改变量更为可信.对未来CO2倍增条件下7个大气环流模型预测的气候情景的模拟结果表明:落叶阔叶林将显著增加,但针叶林、灌木和草原的分布将下降.未来气候条件下NSTEC样带的净第一性生产力总量将增加.预测样带北部的净第一性生产力的变化范围大于样带南部.温度变化比降水变化对样带的生产力具有更强的控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号