首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photo-reactive particle was prepared by graft-copolymerization of 3-acryloyloxy-2-hydroxypropyl methacrylate (AHM) as a bi-functional monomer onto natural rubber (NR) in latex stage with potassium persulfate (KPS) as an initiator, after deproteinization with urea in the presence of surfactant. A terminal vinyl group of AHM was used for the graft-copolymerization, while the other remained in the resulting graft-copolymer, due to different reactivities of vinyl groups in the end of the bi-functional monomer. After graft-copolymerization, the resulting latex was UV-crosslinked to make chemical linkages between the residual pendant vinyl groups of grafted polymers linking up to the rubber particle. The resulting products were characterized by 1H NMR and 13C NMR measurements. Effects of amount of rubber, monomer concentration and reaction time on conversion, grafting efficiency and amount of residual carbon-carbon double bond after graft-copolymerization were investigated. Under the optimum condition, high conversion of monomer and high amount of residual carbon-carbon double bond after graft-copolymerization were achieved without side reaction. A dramatic increase in modulus after UV-irradiation was associated with the connection of the functional polymer linking up to NR particle.  相似文献   

2.
The influence of the concentration of tetramethylthiuram disulfide (TMTD) on grafting of natural rubber by styrene at 80°, 95°, 115°, and 130°C and constant molar ratio of rubber and styrene was studied. It was found that the dependence Rp = f([TMTD]½) at all followed temperatures goes through a maximum and that TMTD substantially decreases the amount of bound rubber in the graft copolymer. The analysis of the kinetic data and the results of separation of polymer mixtures showed the significant role in the process of the termination reactions of the growing polymer and the rubber radicals with the RS radicals. The derived kinetic relation is in good agreement with the experimental, results and allows calculation of the transfer rate constants of RS radical on rubber.  相似文献   

3.
High styrene rubber ionomers were prepared by sulfonating styrene–butadiene rubber of high styrene content (high styrene rubber) in 1,2‐dichloroethane using acetyl sulfate reagent, followed by neutralization of the precursor acids using methanolic zinc acetate. The ionomers were characterized using X‐ray fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), dynamic mechanical analysis (DMA), and also by the evaluation of mechanical properties. The FTIR studies of the ionomer reveal that the sulfonate groups are attached to the benzene ring. The NMR spectra give credence to this observation. Results of DMA show an ionic transition (Ti) in addition to glass–rubber transition (Tg). Incorporation of ionic groups results in improved mechanical properties as well as retention of properties after three cycles of processing. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2294–2300, 2002  相似文献   

4.
Weixin Lin 《Polymer》2004,45(14):4939-4943
A series of high-resolution solid-state 13C NMR experiments were performed on both unstretched and in situ stretched natural rubber samples. From the 13C CP/MAS spectra, it was found that natural rubber does form small crystals at room temperature though the degree of crystallinity is very small. Furthermore, from the 13C DD/MAS spectra, the crystalline signals were found to increase with the increase of draw ratio. 13C spin-lattice relaxation time (T1) and 1H spin-spin relaxation time (T2) of in situ stretched natural rubber were measured for the first time, which provided further evidences for the conclusion that there exist crystals in both stretched and unstretched natural rubber samples. Quantitative 13C NMR measurements indicated that strain-induced crystallization occurs when the draw ratio reaches about 2.0 and the maximum crystallinity of our natural rubber samples can be as high as 19.3% upon stretching.  相似文献   

5.
High‐proton‐conductive polymer electrolyte with a nanomatrix channel was prepared by graft copolymerization of styrene onto deproteinized natural rubber followed by sulfonation with chlorosulfonic acid. First, natural rubber latex was purified with urea in the presence of surfactant to remove almost all proteins present in the rubber. Second, graft copolymerization of styrene onto deproteinized natural rubber was carried out with tert‐butyl hydroperoxide/tetraethylenepentamine as an initiator at 30°C in latex stage. The graft‐copolymerized natural rubber (DPNR‐graft‐PS) was sulfonated with chlorosulfonic acid in chloroform solution at an ambient temperature. The resulting sulfonated DPNR‐graft‐PS was characterized by FTIR spectroscopy, solid state 13C CP/MAS NMR spectroscopy, elemental analysis, and transmission electron microscopy. High proton conductivity of about 0.1 S/cm, less water uptake of 24 wt % and comparatively good stress at break of 9 MPa were accomplished at suitable contents of styrene units and sulfur, i.e., 32 wt % and 75 mol %, respectively. The high proton conductivity, excellent stability, and good mechanical properties were associated with not only the formation of the nanomatrix channel but also a specific concentration of sulfuric acid group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
13C NMR solids spectroscopy and transverse relaxation, and 1H relaxation and pulsed‐gradient spin‐echo self‐diffusion measurements at 70 °C were used to study molecular and segmental mobilities in natural rubber before and after sulfur crosslinking, and after subsequent devulcanization using intense ultrasound. NMR relaxation does not clearly distinguish between entangled and crosslinked network mobility, but unentangled sol and oligomeric species are separable within the longer T2 decay components. Ultrasound reactor settings affect the amount of extractable sol generated. Some two‐thirds of the sol is entangled, with number‐average molecular weights (Mn) above 10 000 g mol?1. Samples also contain near 2 wt% of inert light species (Mn < 400 g mol?1); ultrasound is relatively ineffective in producing additional oligomeric material. All proton mobilities increase as more sol is produced, but 13C relaxation, reflecting intramolecular effects, indicates a slight decrease in backbone mobility. In contrast with other rubbers, in natural rubber, neither the glass transition nor the sol diffusion rate is greatly affected by the extent of ultrasound exposure. Comparisons with previous similar work of this laboratory, particularly styrene‐butadiene rubber, are useful in confirming the molecular mechanisms involved. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
《Chemical engineering science》2002,57(13):2589-2592
This work is focused on the analysis and modelling of styrene drying, raw material in the manufacture of synthetic rubber, by means of adsorption onto activated alumina. Equilibrium experiments, carried out under isothermal conditions at 10°C, correlated to the equation q (kg/kg)=2.659×10−4 C (mg/kg). Fixed bed column experiments were performed working with different flow rates and using different bed lengths in order to obtain experimental breakthrough curves. A mathematical model that considers the influence of both film and pore mass transfer resistances described satisfactorily well the experimental results. Finally a value of Dp=6.101×10−9 m2/s was obtained from correlation of experimental data to simulated curves and using the minimum weighted standard deviation as optimisation criterion.  相似文献   

8.
Summary: A new kind of rubber powder with “salami” structure (RPS) was prepared by spray drying the mixture of styrene‐butadiene rubber latex and nano‐CaCO3 slurry. It was found that RPS is an effective toughener with synergistic toughening effect on poly(propylene) (PP). The Izod impact strength of PP/RPS blend is not only higher than that of PP/rubber powder or PP/nano‐CaCO3 blends, but also higher than that of a PP/rubber powder/CaCO3 blend. TEM images show that the microstructure of the PP/RPS blend is an “island‐sea” structure with “salami” structure in RPS, in which nano‐CaCO3 particles are embedded in styrene‐butadiene rubber particles. The relationship between properties and microstructure has been studied by using TEM, SEM, DSC, etc.

  相似文献   


9.
Two polybutadiene‐graft‐acrylonitrile‐styrene copolymer (PBD‐g‐SAN) impact modifiers with different rubber particle size were synthesized by seeded emulsion polymerization. Acrylonitrile‐butadiene‐styrene (ABS) blends with a constant rubber concentration of 15 wt% were prepared by blending those impact modifiers and SAN resin. The major focus was the mechanical properties and deformation mechanisms of ABS blends under Izod impact test and uniaxial tension at various strain rates from 2.564 × 10?4 S?1 upto 1.282 × 10?1 S?1. By the combination of transmission electron microscope and scanning electron microscope, it was concluded that crazes and cavitation coexisted in ABS blends. The deformation mechanisms of ABS blend containing large rubber particles was rubber particles cavitation and shear yielding in the matrix including crazes, and they do not change with the strain rate. Different from ABS blend with large rubber particles, deformation mechanism of ABS with small rubber particles under tensile condition was only involved in shear yielding in the matrix and no crazes were formed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The incorporation of fillers into elastomers has profound effects on the mechanical, physical, and thermal properties of the nanocomposites that form. In this study, styrene–butadiene rubber as a matrix was reinforced separately with 10‐, 15‐, or 23‐nm CaSO4, which was synthesized by an in situ deposition technique. The mixing and compounding were performed on a two‐roll mill, and sheets were prepared in a compression‐molding machine. Properties such as the swelling index, specific gravity, tensile strength, elongation at break, modulus at 300% elongation, Young's modulus, hardness, and abrasion resistance were measured. The morphology of the rubber nanocomposites was also performed with scanning electron microscopy to study the dispersion of the nanofiller in the rubber matrix. The thermal decomposition of the rubber nanocomposites was studied with thermogravimetric analysis, and the results were compared with those of commercial CaSO4‐filled styrene–butadiene rubber. A reduction in the nanosizes of CaSO4 led to an enhancement of the mechanical, physical, and thermal properties of the rubber nanocomposites. Above a 10 wt % filler loading, the styrene–butadiene rubber showed a reduction in all properties. This effect was observed because of the agglomeration of the nanoparticles in the rubber matrix. The thermodynamic parameters were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2018–2026, 2007  相似文献   

11.
Masaaki Kojima  Yuko Ikeda 《Polymer》2005,46(7):2016-2019
The behavior of supercritical CO2 (scCO2)/low molar mass molecule/crosslinked rubber ternary system was investigated in relation to the impregnation of reagent into the isoprene rubber (IR) vulcanizates, which was the first step of new decrosslinking reaction. The diffusion coefficient of decrosslinking reagent, diphenyl disulfide (DD), into the IR network in scCO2 was 3.2×10−11 m2/s. The distribution coefficient (Kc) of DD between the solvent and IR matrix was also determined for scCO2 and toluene. The Kc for scCO2 was higher about four orders of magnitude than that for toluene. DD was uniformly dispersed in the crosslinked IR matrix under 10 MPa at 313 K in scCO2. These phenomena are advantages of use of scCO2 for the effective decrosslinking reaction of IR vulcanizate.  相似文献   

12.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

13.
Radiation-induced simultaneous grafting of N,N-dimethyl-acrylamide (DMAA) onto natural rubber (NR) tubes has been studied to improve blood compatibility of the NR tubes. Concerning grafting of DMAA onto NR tubes, it was found that the grafting proceeds effectively in the presence of carbon tetrachloride (CCl4) as a solvent. The degree of grafting was found to be saturated at about 26 wt%, but a higher degree of grafting can be obtained by either “so called two-step grafting” or “putting a standing time for a while before irradiation.” The initial grafting rate was proportional to 0.85 power of dose rate. The apparent activation energy of the graft-copolymerization was 7.42 kcal/mol. Evaluation of blood compatibility of DMAA-grafted NR tubes has been carried out by ex vivo test. According to the results, significant improvement of blood compatibility was obtained for the samples in which degree of grafting is higher than 30 wt%.  相似文献   

14.
Mehdi Jaymand 《Polymer》2011,52(21):4760-4769
This paper describes the synthesis and characterization of novel type poly (4-chloromethyl styrene-graft-4-vinylpyridine)/TiO2 nanocomposite. Firstly, poly (4-chloromethyl styrene)/TiO2 nanocomposite was synthesized by in situ free radical polymerizing of 4-chloromethyl styrene monomers in the presence of 3-(trimethoxysilyl) propylmethacrylate (MPS) modified nano-TiO2. Thereafter, 1-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO-OH) was synthesized by the reduction of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). This functional nitroxyl compound was covalently attached to the poly (4-chloromethyl styrene)/TiO2 with replacement of chlorine atoms in the poly (4-chloromethyl styrene) chains. The controlled graft copolymerization of 4-vinylpyridine was initiated by poly (4-chloromethyl styrene)/TiO2 nanocomposite carrying TEMPO groups as a macroinitiators. The coupling of TEMPO with poly (4-chloromethyl styrene)/TiO2 was verified using 1H nuclear magnetic resonance (NMR) spectroscopy. The obtained nanocomposites were studied using transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectra, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and the optical properties of the nanocomposites were studied using ultraviolet-visible (UV-Vis) spectroscopy.  相似文献   

15.
The cut growth properties of styrene–butadiene block and random copolymers are considered in terms of the tearing energy theory. It is found that the value of T0 (the minimum value of tearing energy below which no cut growth takes place in the absence of chemical effects) is far higher for a styrene–butadiene resin copolymer system with a high amount of bound styrene resin than for a conventionally vulcanized SBR elastomer. Similarly, it is shown that the value of T0 for a butadiene–styrene block copolymer (thermoplastic rubber) is considerably reduced when the material is crosslinked. It is proposed that the value of T0 is influenced by the hystersial properties of the rubber.  相似文献   

16.
Waste rubber powder/polystyrene (WRP/PS) blends with different weight ratio were prepared with styrene grafted styrene butadiene rubber copolymer (PS-g-SBR) as a compatibilizer. The graft copolymer of PS-g-SBR was synthesized by emulsion polymerization method and confirmed through Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC). The copolymer at different weight ratio was subsequently added into the blends. The effects of weight ratio of WRP/PS and compatibilizer loading on mechanical properties were investigated. PS/WRP blends in a weight ratio of 80/20 showed higher impact strength. Moreover, the impact strength of the blend materials increased with the addition of SBR-g-PS, however, decreased at a high loading of the copolymer. The morphology and thermal properties of WRP/PS blends were examined by DSC, scanning electron microscopy (SEM), thermogravimetry (TG). DSC indicated that compared with PS/WRP blend, the glass transition temperature (T g) of PS matrix phase in PS/WRP/SBR-g-PS blend shifted to low temperature because of the formation of chemical crosslinks or boundary layer between PS and WRP, and the T g of WRP phase of both the PS/WRP and PS/WRP/SBR-g-PS blends did not appear. SEM results showed that interfacial adhesion in the blends with the PS-g-SBR copolymer was improved. The morphology was a typical continuous–discontinuous structure. PS and WRP presented continuous phase and discontinuous phase, respectively, indicating the moderate interface adhesion between WRP and PS matrix. TG illustrated that the onset of degradation temperature in the PS/WRP/PS-g-SBR blend decreased slightly by contrast with PS/WRP blend and the degradation of PS/WRP blends with and without SBR-g-PS was completed about at the same values.  相似文献   

17.
The dynamic properties, including the dynamic mechanical properties, flex fatigue properties, dynamic compression properties, and rolling loss properties, of star‐shaped solution‐polymerized styrene–butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped styrene–butadiene rubber cocoagulated rubber (N‐SSBR), both filled with silica/carbon black (CB), were studied. N‐SSBR was characterized by 1H‐NMR, gel permeation chromatography, energy dispersive spectrometry, and transmission electron microscopy. The results show that the silica particles were homogeneously dispersed in the N‐SSBR matrix. In addition, the N‐SSBR/SiO2/CB–rubber compounds' high bound rubber contents implied good filler–polymer interactions. Compared with SSBR filled with silica/CB, the N‐SSBR filled with these fillers exhibited better flex fatigue resistance and a lower Payne effect, internal friction loss, compression permanent set, compression heat buildup, and power loss. The nanocomposites with excellent flex fatigue resistance showed several characteristics of branched, thick, rough, homogeneously distributed cross‐sectional cracks, tortuous flex crack paths, few stress concentration points, and obscure interfaces with the matrix. Accordingly, N‐SSBR would be an ideal matrix for applications in the tread of green tires. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40348.  相似文献   

18.
The capabilities of ion bombardment and laser ablation coupled to mass spectrometry as independent techniques to investigate the surface thermooxidative stability of polystyrene, polybutadiene polymers, and styrene butadiene rubber (SBR) copolymers were investigated. Surface chemical modifications were detected according to the polymeric structure. The degradation products detected by static secondary ion mass spectrometry appeared at m/z 29, 43, and 55. Their compositions were related to the general formulae CnHmO+ with n = 1–3 and m = 1–3 for polybutadiene and styrene butadiene copolymers, whereas polystyrene was not affected by the aging treatment. The CnHmO+ ions result from butadiene unit degradation. The laser ablation ionization Fourier transform ion cyclotron resonance mass‐spectrometry results confirmed the detection of CnHmO+ ions. Finally, it may be considered that the surface thermooxidative process of SBR copolymers begins with butadiene unit degradation. The development of butadiene unit oxidation showed a dynamic oxidation phase, which coincided with a loss of unsaturation. The influence of the polymer conformation (blocked, branched, and random) on the surface oxidation for 30% styrene SBR compounds was also studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1910–1917, 2003  相似文献   

19.
In this study, we established a correlation between cavitations volume and the brittle-ductile transition (BDT) for particle toughened thermoplastics. The brittle-ductile transition temperature (TBD) was calculated as a function of T and interparticle distance (ID), respectively, where T was a parameter related to the volume of cavitations. The results showed that the smaller the cavitations volume, the higher the brittle-ductile transition temperature. The calculations correlated well with the experimental data. With respect to rubber particle, the rigid particle was too hard to be voided during deformation, thereby the TBD of the blend was much higher than that of rubber particle toughened thermoplastic. This was a main reason that rubber particle could toughen thermoplastics effectively, whereas rigid particle could not.  相似文献   

20.
Two new C1-symmetric zirconocenes of the type [Me2C(3-RCp)(Flu)]ZrCl2 bearing a phenyl (Ph) or a cyclohexyl (cHex) substituent on the cyclopentadienyl ring were synthesized. Copolymerizations of ethene and styrene were carried out using these catalysts and compared to the results obtained with the methyl- and tertbutyl-substituted as well as with the unsubstituted system. By the introduction of the phenyl substituent both the activities and the molar masses could be increased whilst the styrene incorporation was comparable to that achieved with the unsubstituted system. In the case of the alkyl substituted systems (R=Me, tertBu, cHex) the styrene incorporation is decreased drastically and molar masses and activities are also strongly effected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号