首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ba0.8Sr0.2TiO3/Poly (vinylpyrrolidone) (BST/PVP) composite fibers were successfully synthesized via electrospinning. The ceramic nanofibers were obtained after calcining the composite at 800 °C for 2 h. The morphology and structure of the BST fibers were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results reveal that the as-synthesized BST nanofibers show a diameter of 50-150 nm with the length over 0.1 mm, and a well-defined perovskite crystal structure. The electrical properties of the as-synthesized BST nanofibers were investigated through an impedance-type humidity sensor. The nanofibers exhibited excellent humidity sensing properties at room temperature. The possible sensing mechanism was proposed.  相似文献   

2.
TiO2 thin films were prepared by DC reactive magnetron sputtering in a mixture of oxygen and argon on glass and oxidized silicon substrates. The effect of post-deposition annealing (300 °C, 500 °C and 700 °C for 8 h in air) on the structural and morphological properties of TiO2 thin films is presented. In addition, the effect of Pt surface modification (1, 3 and 5 nm) on hydrogen sensing was studied. XRD patterns have shown that in the range of annealing temperatures from 300 °C to 500 °C crystallization starts and the thin film structure changes from amorphous to polycrystalline (anatase phase). In the case of samples on glass substrate, optical transmittance spectra were recorded. TiO2 thin films were tested as sensors of hydrogen at concentrations 10,000-1000 ppm and operating temperatures within the 180-200 °C range. The samples with 1 nm and in particular with 3 nm of Pt on the surface responded to hydrogen fast and with high sensitivity.  相似文献   

3.
TiO2/ZnO composite nanofibers with diameters in the range of 85–200 nm were fabricated via the electrospinning technique using zinc acetate and titanium tetra-isopropoxide as precursors, cellulose acetate as the fiber template, and N,N-dimethylformamide/acetone 1:2 (v/v) mixtures as the co-solvent. After treated with 0.1 mol/L NaOH aqueous solution, TiO2/zinc acetate/cellulose acetate composite nanofibers were transformed into TiO2/Zn(OH)2/cellulose composite nanofibers. TiO2/ZnO composite nanofibers were obtained by calcinating the hydrolyzed composite fibers at 500 and 700 °C for 5 h. The structure and morphology of composite nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. With the blending of ZnO into TiO2, a new crystallite ZnTiO3 was formed in addition to the ZnO and TiO2 crystallites, and the ultraviolet light absorption efficiency was enhanced according to the UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of TiO2/ZnO composite nanofibers toward the decomposition of Rhodamine B and phenol was investigated. Almost 100% Rhodamine B and 85% phenol were decomposed in the presence of TiO2/ZnO composite nanofibers under mild conditions. The results demonstrated that the blending of ZnO in the TiO2/ZnO composite nanofibers increased the photocatalytic efficiency. The optimum ZnO content in the TiO2/ZnO composite nanofibers was 15.76 wt% to reach the most efficient photocatalytic activity. A schematic diagram of photocatalytic mechanism of TiO2/ZnO composite nanofibers was also presented.  相似文献   

4.
TiO2 nanotubes were synthesized by the decomposition of titanium isopropoxide in water and the calcination at 450 °C for 2 h to form TiO2 nanoparticles. The synthesized TiO2 in anatase form nanoparticles were processed hydrothermally in 10 M NaOH solution at 130 °C for 24 h to obtain multilayer TiO2 nanotubes. TEM analysis revealed that the diameters of the tubes were around 10 nm and they are in the length of 100 nm. Subsequently, colloidal suspensions containing 1% wt. Of TiO2 nanotubes were prepared with TEA and butanol and electrophoretic deposition (EPD) experiments were conducted in order to obtain coatings on Ni and carbon filters using a deposition time of 10 min. and an applied voltage of 65 V. It is also shown that multilayer TiO2 nanotubes having outer diameter around 10 nm and inner diameters of 4.3 nm can be produced using the described technique. EPD is also shown to be an effective technique to coat three dimensional components, such as Ni and C filters for various applications including water and air purification systems.  相似文献   

5.
Hexagonal YMnO3 nanofibers were successfully fabricated by sol-gel preparation based on electrospinning. The as-spun fibers dried at 125 °C were round and had a rather uniform diameter around 0.7 μm-2 μm over its length. In order to get pure hexagonal YMnO3 nanofibers, crystalline structures and microstructures of fibers at various temperatures for 6 h were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The reasonable evaluations for the change of morphology with the increasing temperature were proposed. After being heated at 1100 °C for 6 h, the pure hexagonal YMnO3 nanofibers were obtained with a reduced diameter ranging from 200 nm to 800 nm and the fibers were homogenous in chemical constitution over its length.  相似文献   

6.
Ti thin films were anodized in aqueous HF (0.5 wt.%) and in polar organic (0.5 wt.% NH4F + ethylene glycol) electrolytes to form TiO2 nanotube arrays. Ti thin films were deposited on microscope glass substrates and then anodized. Anodization was performed at potentials ranging from 5 V to 20 V for the aqueous HF and from 20 V to 60 V for the polar organic electrolytes over the temperatures range from 0 to 20 °C. The TiO2 nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). It has been observed that anodization of the deposited Ti thin films with aqueous HF solution at 0 °C resulted in nanotube-type structures with diameters in the range of 30-80 nm for an applied voltage of 10 V. In addition, the nanotube-type structure is observed for polar organic electrolyte at room temperature at the anodization voltage higher than 40 V. The volatile organic compound (VOC) sensing properties of TiO2 nanotubes fabricated using different electrolytes were investigated at 200 °C. The maximum sensor response is obtained for carbon tetrachloride. The sensor response is dependent on porosity of TiO2. The highest sensor response is observed for TiO2 nanotubes which are synthesized using aqueous HF electrolyte and have very high porosity.  相似文献   

7.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

8.
The effects of TiO2-SiO2 sol-gel coating with different firing temperatures (300 °C, 500 °C, and 750 °C) on the cpTi-porcelain bond strength were investigated in the present study. Prior to applying the low-fusing dental titanium porcelain, the phase, surface morphology, surface roughness and static water contact angle of the intermediate layer were evaluated. The cpTi-porcelain bond strength was measured using the three-point flexure test according to ISO 9693 standard. Statistical analyses were made using one-way ANOVA and Dunnett-t test. Significantly higher bond strength of TiO2-SiO2/750 °C (specimens coated with TiO2-SiO2 sol-gel coating and fired at 750 °C for 1 h) when compared to the control group was observed (p < 0.05). No rutile phase was found in all the tested specimens coated with TiO2-SiO2 sol-gel coating. The surface morphology of the intermediate layer was apparently different with different firing temperatures. It was found that the static water contact angle of TiO2-SiO2/750 °C significantly decreased (p < 0.05). However, no markedly different Ra of TiO2-SiO2/500 °C and TiO2-SiO2/750 °C in comparison to that of the control group was observed (p > 0.05). The results show that the TiO2-SiO2 sol-gel coating fired at 750 °C for 1 h can notably improve the cpTi-porcelain bond strength and may be suitable for clinical use.  相似文献   

9.
We have studied the structural and optical properties of thin films of TiO2, doped with 5% ZrO2 and deposited on glass substrate (by the sol-gel method). The dip-coated thin films have been examined at different annealing temperatures (350 to 450 °C) and for various layer thicknesses (63-286 nm). Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.62-2.29 and the porosity is in the range of 0.21-0.70. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZrO2, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 14.8 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range (8.58-20.56 nm).  相似文献   

10.
CoFe2−xSmxO4 (x = 0–0.2) nanofibers with diameters about 100–300 nm have been prepared using the organic gel-thermal decomposition method. The composition, structure and magnetic properties of the CoFe2−xSmxO4 nanofibers were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductive coupling plasma mass analyzer and vibrating sample magnetometer. The CoFe2−xSmxO4 (x = 0–0.2) nanofibers obtained at 500–700 °C are of a single spinel structure. But, at 800 °C with a relatively high Sm content of 0.15–0.2 the spinel CoFe2−xSmxO4 ferrite is unstable and the second phase of perovskite SmFeO3 occurs. The crystalline grain sizes of the CoFe2−xSmxO4 nanofibers decrease with Sm contents, while increase with the calcination temperature. This grain reduction effect of the Sm3+ ions doping is largely owing to the lattice strain and stress induced by the substitution of Fe3+ ions with larger Sm3+ ions in the ferrite. The saturation magnetization and coercivity increase with the crystallite size in the range of 8.8–57.3 nm, while decrease with the Sm content from 0 to 0.2 owing to a smaller magnetic moment of Sm3+ ions. The perovskite SmFeO3 in the composite nanofibers may contribute to a high coercivity due to the interface pinning, lattice distortion and stress in the ferrite grain boundary fixing and hindering the domain wall motion.  相似文献   

11.
Nanocrystalline anatase TiO2 was prepared by a facile sol-gel route at a temperature of 65 °C under mild conditions. Tetrabutyl titanate was used as a titanium precursor, glacial acetic acid was used as an inhibitor, and anhydrous ethanol was used as a solvent. XRD, TEM, FT-IR and XPS spectra were applied to characterize the crystal phase, microstructure, and other physicochemical properties of the nanoanatase TiO2. The results showed that as prepared ellipse-shaped anatase TiO2 with an average diameter of 7 nm, which is rich in surface hydroxyl groups, was found to exhibit high dispersibility.  相似文献   

12.
This work reports on the synthesis and the structural and optical characterization of beta barium borate (β-BBO) thin films containing 4, 8 and 16 mol% of titanium oxide (TiO2) deposited on fused silica and silicon (0 0 1) substrates using the polymeric precursor method. The thin films were characterized by X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy techniques. The optical transmission spectra of the thin films were measured over a wavelength range of 800-200 nm. A decrease was observed in the band gap energy as the TiO2 content was raised to 16 mol%. Only the β-BBO phase with a preferential orientation in the (0 0 l) direction was obtained in the sample containing 4 mol% of TiO2 and crystallized at 650 °C for 2 h.  相似文献   

13.
Li2TiO3 ceramics were prepared at the sintering temperatures from 1050 to 1250 °C. The optimal microwave dielectric properties were ?r = 23.29, Q × f = 15,525 GHz (5.9 GHz), and τf = 35.05 ppm/ °C for the sample sintered at 1200 °C. The microwave dielectric properties were improved obviously when the Li2TiO3 ceramics were sintered at low temperatures with small additions of H3BO3 (B2O3 in the form of H3BO3). Only monoclinic Li2TiO3 was found in the pure or H3BO3-doped Li2TiO3 ceramics. About 1.0 wt.% H3BO3 addition aided the sintering of Li2TiO3 ceramics effectively while excessive H3BO3 (≥2.5 wt.%) was not favorable. Typically the best microwave dielectric properties were ?r = 23.28, Q × f = 37,110 GHz (6.3 GHz), and τf = 30.43 ppm/ °C for the 1.0 wt.% H3BO3-doped Li2TiO3 ceramic sintered at 920 for 3 h, which is promising for LTCC applications.  相似文献   

14.
A new technique to produce microscale Ti3O5 nano- and microfiber meshes is proposed. When a 3 wt% carbon-doped TiO2 film on Si(1 0 0) was annealed at 1000 °C in wet nitrogen (0.8%H2O), the amorphous TiO2 phase gave rise to crystalline phases of λ-Ti3O5 (75%) and rutile + trace of TiO2−xCx (25%). From Raman and FTIR Spectroscopy results, it was concluded that rutile is formed at the inner layer located at the interface between the mesh and the Si that was located away from the surface such that the meshes of nano- and microfibers are predominantly composed of Ti3O5 grown from the reaction of rutile with Si to form Ti3O5 and SiO2. On the other hand, it was noteworthy that the microscale mesh of nano- and microfibers showed increased photoluminescence compared with amorphous TiO2. The PL spectrum which had a broad band in the visible spectrum, fitted as three broad Gaussian distributions centered at 571.6 nm (∼2.2 eV), 623.0 nm (∼2.0 eV) and 661.9 nm (∼1.9 eV).  相似文献   

15.
Anatase titanium dioxide (TiO2) thin films are prepared by DC reactive magnetron sputtering using Ti target as the source material. In this work argon and oxygen are used as sputtering and reactive gas respectively. DC power is used at 100 W per 1 h. The distance between the target and substrate is fixed at 4 cm. The glass substrate temperature value varies from room temperature to 400 °C. The crystalline structure of the films is determined by X-ray diffraction analysis. All the films deposited at temperatures lower than 300 °C were amorphous, whereas films obtained at higher temperature grew in crystalline anatase phase. Phase transition from amorphous to anatase is observed at 400 °C annealing temperature. Transmittances of the TiO2 thin films were measured using UV-visible NIR spectrophotometer. The direct and indirect optical band gap for room temperature and substrate temperature at 400 °C is found to be 3.50, 3.41 eV and 3.50, 3.54 eV respectively. The transmittance of TiO2 thin films is noted higher than 75%. A comparison among all the films obtained at room temperature showed a transmittance value higher for films obtained at substrate temperature of 400 °C. The morphology of the films and the identification of the surface chemical stoichiometry of the deposited film at 400 °C were studied respectively, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness and the grain size are measured using AFM.  相似文献   

16.
The helical carbon nanofibers (CNFs), synthesized at relatively low temperatures (lower than 250 °C) by using Cu as a catalyst, SiO2, TiO2, Al2O3, MgO as supports and acetylene as gas source, has been investigated.The products were characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The morphologies of obtained products influenced by the types of supports and weight ratios (Cu/support = 1:1, 1:5, and 1:10) were discussed. The average diameter of the helical CNFs was about 80 nm, and these CNFs had the same coil pitch, and coil diameter.  相似文献   

17.
Metal plasma ion implantation has being successfully developed for improving the electronic and optical properties of semiconductor materials. Prior to deposition, a TiO2 colloidal suspension was synthesized by microwave-induced thermal hydrolysis of the titanium tetrachloride aqueous solution. The TiO2 thin film was optimized to obtain a high-purity crystalline anatase phase by calcinations at 550 °C. The TiO2 coating was uniform without aggregation, which provided good photo conversion efficiency. Ag ion implantation into the as-calcined TiO2 thin films was conducted with 1 × 1015 ~ 1 × 1016 ions/cm2 at 40 keV. The peak position and intensity of the photoluminescence and UV-Vis absorption spectra are quite sensitive to Ag doping. The optical characterization showed a shift in optical absorption wavelength towards infrared ray side, which was correlated with the structure variation of the Ag+ implanted TiO2. Due to the strong capability of forming compounds between the energetic silver ions and TiO2, the photoluminescence emission and UV-Vis absorption efficiencies were improved.  相似文献   

18.
Herein, we report a photoinduced transition of hydrophobicity to high hydrophilicity of TiO2 nanodot films in applications of cell sheet engineering. A phase-separation-induced self-assembly process was adopted to prepare a TiO2 nanodot gel film on a substrate. Subsequently, a hydrothermal treatment (with ethanol/water at 140 °C for 2 h) was used to convert the nanodot gel film to TiO2 nanodot solid film. The resulting TiO2 dots were amorphous with adjustable size and density. The amorphous TiO2 nanodot film showed a conversion from a good hydrophobic surface, with a water contact angle (WCA) of 67.6 ± 2.0°, to a highly hydrophilic one, with a WCA of 5.3 ± 2.0° (i.e. almost superhydrophilic) after UV irradiation. A good reversibility was also observed.  相似文献   

19.
CeO2-ZnO composite nanofibers were fabricated via the electrospinning technique using zinc acetate and cerium nitrate as the precursors, poly(vinylpyrrolidone) as the fiber template, and 2:1(v/v) ethanol/water mixtures as the co-solvent, followed by thermal treatment at 600 °C for 3 h. Various characterization methods were employed to investigate the morphologies and structures of the nanofibers. The calcined composite nanofibers showed a continuous line feature with an average diameter of 46 nm composed of 15 ± 3 nm CeO2 and ZnO nanoparticles. Photocatalytic activity experiments showed that the Rhodamine B was almost completely decomposed when it was catalyzed by CeO2-ZnO nanofibers within 3 h, while only 17.4% and 82.3% were decomposed under catalysis by CeO2 and ZnO nanofibers respectively. Such CeO2-ZnO composite nanofibers could have potential applications in the treatment of organic-polluted water.  相似文献   

20.
N. Bickel  P. LiKamWa 《Thin solid films》2011,519(6):1955-1959
Post-growth treatment with a low pressure, CF4-plasma is demonstrated to reliably inhibit the interdiffusion of In and Ga atoms in In0.15Ga0.85As/GaAs self-assembled quantum dot wafer structures subjected to rapid thermal annealing temperatures between 700 °C and 800 °C for a duration of 20 s. Comparative studies of the effects of rapid thermal annealing were made on plasma treated samples and samples that were capped with either 200 nm of plasma enhanced chemical vapor deposited SiO2 or 220 nm of thermally deposited TiO2 prior to plasma exposure, as well as to uncapped, untreated control samples. Room-temperature photoluminescence spectra were acquired using a Ti-Sapphire laser operating at 742 nm as the excitation source. A bandgap differential of 84 meV (94 nm) was measured across a wafer sample annealed at 775 °C, when contrasting sections that were uncapped and treated with the CF4-plasma versus sections that were annealed without any treatment to the surface. This was comparable to a sample that was capped with the TiO2 film, which produced a 73.5 meV (82 nm) variance from the raw, annealed-only sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号