首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
选用胶体SiO2纳米颗粒为磨粒,研究不同pH值条件下高锰酸钾和双氧水两种氧化剂对6H-SiC晶片化学机械抛光的影响,并使用原子力显微镜观察抛光后表面质量。采用Zeta电位分析仪分析溶液中胶体SiO2颗粒的Zeta电位,采用X射线光电子能谱分析SiC抛光表面元素及其化学状态。结果表明:SiC晶片的材料去除率随pH值变化而变化,采用高猛酸钾抛光液抛光时,材料去除率在pH 6时达到峰值185 nm/h,Ra为0.25 nm;采用双氧水抛光液抛光时,材料去除率在pH 8时达到峰值110 nm/h,Ra为0.32 nm。pH值低于5时,电负性的SiO2颗粒会通过静电作用吸附在带正电的SiC表面,抑制SiC晶片表面原子的氧化及去除,降低材料去除率;pH值高于5时,SiO2颗粒在双氧水抛光液中的静电排斥力弱于高锰酸钾抛光液中静电排斥力,从而影响了SiO2颗粒的分散性能,降低了抛光效果。采用高锰酸钾抛光液抛光后,SiC晶片表面的Si-C氧化产物含量(Si-C-O、Si4C4-xO2和Si4C4O4)较高,高锰酸钾抛光液的氧化能力较强。  相似文献   

2.
利用自制的抛光液对蓝宝石晶片进行化学机械抛光,研究化学机械抛光过程中抛光压力、抛光液pH值、SiO2浓度、络合剂种类及其浓度等参数对抛光速率的影响,采用MicroNano D-5A扫描探针显微镜观察抛光前后蓝宝石晶片的表面形貌。结果表明:在抛光条件为压力7psi、转速为50 r/min、抛光液流量为60 mL/min,抛光液组成为pH值12、SiO2浓度5%、络合剂Ⅰ及其浓度为1.25%时,得到最大抛光速率为35.30 nm/min,蓝宝石晶片表面质量较好,表面粗糙度Ra达到0.1 nm。  相似文献   

3.
碲锌镉(CZT)晶片是目前制造室温下高能射线探测器最理想的半导体材料,获得高质量的CZT晶片对探测性能的提高具有十分重要的意义.基于化学机械抛光(CMP)工艺,采用绿色环保的抛光液配方,设计并进行磨粒粒径、磨粒质量分数、抛光液pH值和抛光压力的4因素3水平正交CMP试验,实现200μm×200μm范围内平均粗糙度最低为...  相似文献   

4.
针对单晶SiC化学机械抛光使用的抛光液,研究了产生芬顿反应Fe、FeO、Fe2O3、Fe3O4等4种铁系固相催化剂的效果。结果发现当Fe3O4作为催化剂时,SiC表面能够产生明显的化学反应,生成较软易去除的SiO2氧化层,化学机械抛光时材料去除率最高达到17.2 mg/h、表面粗糙度最低达到Ra2.5 nm。相比Fe、FeO、Fe2O3等固相催化剂,Fe3O4更适宜用作SiC的化学机械抛光。抛光液中Fe2+离子浓度和稳定性是决定芬顿反应速率和稳定性的重要因素,固相催化剂电离自由Fe2+能力的差异直接影响了化学抛光液中的Fe2+浓度,固相催化剂电离Fe2+的能力越强,抛光液中Fe2+浓度就越高,芬顿反应速率越快,与SiC进行化学反应速度越快,材料去除率越高,抛光质量越好。  相似文献   

5.
选择影响化学机械抛光化学反应速率的参数:催化剂浓度、氧化剂浓度、抛光液的pH值、抛光液温度等进行了试验,研究了它们对基于芬顿反应的单晶SiC化学机械抛光效果的影响规律。发现只有当H_2O_2浓度高于20%、Fe_3O_4浓度高于1.25%时,增大H_2O_2、Fe_3O_4浓度,材料去除率才会显著越高,此时材料去除速率由化学液腐蚀速度与磨料机械去除速度共同决定;低于此范围时由磨料的机械作用决定。温度升高会加速H_2O_2分解,抑制羟基自由基·OH的生成,减缓化学腐蚀,降低材料去除率。当Fe_3O_4浓度、H_2O_2浓度、pH值、抛光液温度分别为1.25%、15%、7、41℃时,化学腐蚀与机械去除的协调性及磨料的分散性较好,表面粗糙度最低;当它们分别为5%、25%、9.3、15℃时,材料去除率最高。  相似文献   

6.
利用复合磨粒抛光液的硅片化学机械抛光   总被引:1,自引:0,他引:1  
为了提高硅片的抛光速率,利用复合磨粒抛光液对硅片进行化学机械抛光.分析了SiO2磨粒与聚苯乙烯粒子在溶液中的ζ电位及粒子间的相互作用机制,观察到SiO2磨粒吸附在聚苯乙烯及某种氨基树脂粒子表面的现象.通过向单一磨粒抛光液中加入聚合物粒子的方法获得了复合磨粒抛光液.对硅片传统化学机械抛光与利用复合磨粒抛光液的化学机械抛光进行了抛光性能研究,提出了利用复合磨粒抛光液的化学机械抛光技术的材料去除机理,并分析了抛光工艺参数对抛光速率的影响.实验结果显示,利用单一SiO2磨料抛光液对硅片进行抛光的抛光速率为180 nm/min;利用SiO2磨料与聚苯乙烯粒子或某氨基树脂粒子形成的复合磨粒抛光液对硅片进行抛光的抛光速率分别为273 nm/min和324 nm/min.结果表明,利用复合磨粒抛光液对硅片进行抛光提高了抛光速率,并可获得Ra为0.2 nm的光滑表面.  相似文献   

7.
无抛光垫化学机械抛光技术研究   总被引:2,自引:0,他引:2  
应用双电层理论分析了SiO2磨粒与聚苯乙烯粒子在溶液中的ζ电位及粒子间的相互作用机制,观察到SiO2磨粒吸附在聚苯乙烯粒子表面的现象.分析了基于复合粒子抛光液的无抛光垫化学机械抛光技术特点及其材料去除机理.比较试验表明,基于复合粒子抛光液的硅片无抛光垫化学机械抛光具有与传统化学机械抛光相接近的材料去除率和硅片表面粗糙度值,并可避免工件塌边现象的产生.  相似文献   

8.
随着集成电路线宽变窄,要求铜互连表面具有更低的表面粗糙度,对化学机械抛光(CMP)技术提出更高的要求。采用聚苯乙烯(PS)-二氧化硅(SiO2)复合颗粒作为铜层CMP的抛光磨粒,研究出PS-SiO2核壳结构的形成条件,分析新型抛光液体系中各颗粒含量、pH值等因素对Cu抛光效果的影响,通过X射线光电子能谱(XPS)、扫描电镜(SEM)等手段探讨其中的抛光机制和颗粒残留等问题。结果表明:较之PS、SiO2颗粒抛光液,复合颗粒抛光液抛光Cu后,获得更大的去除和更好的表面质量,且与抛光过程中摩擦因数的关系相符合。  相似文献   

9.
为了配制适用于JGS1光学石英玻璃超声波精细雾化抛光的特种抛光液,以材料去除率和表面粗糙度为评价指标,设计正交试验探究抛光液中各组分含量对雾化抛光效果的影响,并对材料去除机制进行简要分析。结果表明:各因素对材料去除率的影响程度由大到小分别为SiO2、pH值、络合剂、助溶剂和表面活性剂,对表面粗糙度影响程度的顺序为SiO2、表面活性剂、pH值、助溶剂和络合剂;当磨料SiO2质量分数为19%,络合剂柠檬酸质量分数为1.4%,助溶剂碳酸胍质量分数为0.2%,表面活性剂聚乙烯吡咯烷酮质量分数为0.9%,pH值为11时,雾化抛光效果最好,材料去除率为169.5 nm/min,表面粗糙度为0.73 nm;去除过程中石英玻璃在碱性环境下与抛光液发生化学反应,生成低于本体硬度的软质层,易于通过磨粒机械作用去除。使用该抛光液进行传统化学机械抛光和雾化化学机械抛光,比较两者的抛光效果。结果表明:两者抛光效果接近,但超声雾化方式抛光液用量少,仅为传统抛光方式的1/7。  相似文献   

10.
在数控坐标磨床上应用化学机械抛光(Chemo-mechanical polishing,CMP)技术,对氮化硅陶瓷回转曲面零件进行超精密加工工艺实验研究.分析了氮化硅陶瓷化学机械抛光原理,并搭建化学机械抛光实验平台.通过实验研究了水基CeO2抛光液浓度、抛光液流量、抛光轮转速等主要工艺参数对氮化硅陶瓷零件抛光的表面质量的影响规律,根据实验结果对抛光工艺参数进行了优选.结果表明:在抛光液浓度为20%,抛光液流量为0.6 L/min,抛光轮转速为6 000 r/min的条件下,能获得较好的抛光表面质量,其表面粗糙度Rα达12 nm.  相似文献   

11.
The study mainly explores the fabrication mechanism for fabricating sapphire wafer substrate, by using chemical mechanical polishing (CMP) method. A slurry containing the abrasive particles of SiO2 is used to contact with the sapphire substrate polish and to produce chemical reaction for removal of sapphire wafer substrate when CMP method is used. The study observes the changes of the removal amount of sapphire wafer substrate when the pattern-free polishing pad and hole-pattern polishing pad are used under different down forces, polishing velocities, abrasive particle sizes and slurry concentrations. Employing regression analysis theory, the study makes improvement of the equation of material removal rate (MRR) to be the material removal height per 30 minutes (MRRh), and develops a compensation parameter Crv of the error caused by the volume concentration of slurry. The results of experimental analysis show that under a certain down force, if the polishing velocity is greater, the material removal amount will be greater. Generally speaking, the material removal amount of hole-pattern polishing pad is greater than that of pattern-free polishing pad. As to the relationship between abrasive particle size and slurry concentration, when particle size is smaller, the volume concentration of slurry will be higher, and the number of abrasives for polishing wafer will be greater. As a result, a better material removal depth can be acquired. Through the above analytical results, considerable help is offered to the polishing of sapphire wafer.  相似文献   

12.
Self-conditioning performance of polishing pad is an important characteristic to influence processing efficiency and service life in chemical mechanical polishing (CMP). The slurry can react with the pad surface, which affects its self-conditioning performance in fixed abrasive polishing process. Wear ratio of wafer material removal rate (MRR) and pad wear rate is introduced to evaluate self-conditioning performance of fixed abrasive pad (FAP). To clear the effect of chemical additive on FAP self-conditioning, wear ratio, FAP surface topography, friction coefficient, and acoustic emission signal of polishing process were investigated in fixed abrasive polishing of quartz glass with ferric nitrate, ethylenediamine (EDA), and triethanolamine (TEA) slurry, respectively. Results indicate that TEA slurry can provide excellent self-conditioning of FAP in fixed abrasive polishing of quartz glass. MRR and wear ratio maintain high levels during the whole polishing process. Friction coefficient and acoustic emission signal are more stable than that of the other two chemical additives. An appropriate amount of TEA, which is beneficial to enhance MRR and extends service life of FAP, is added in the polishing slurry to improve FAP self-conditioning in fixed abrasive polishing process.  相似文献   

13.
Chemical mechanical polishing (CMP) is a common method for realising the global planarisation and polishing of single-crystal SiC and other semiconductor substrates. The strong oxidant hydroxyl radicals (·OH) generated by the Fenton reaction can effectively oxidise and corrode the SiC substrate, and are thus used to improve the material removal rate (MRR) and surface roughness (Ra) after polishing of SiC during CMP. Therefore, it is necessary to study the material removal mechanism in detail. Based on the modified Preston equation, the effects of the CMP process parameters on the MRR and Ra after polishing of SiC and their relationship were studied, and a prediction model of the CMP process parameters, MRR, and Ra after polishing was also established based on a back-propagation neural network. The MRR initially increased and then decreased, and the Ra after polishing initially decreased and then increased, with increasing FeSO4 concentration, H2O2 concentration, and pH value. The MRR continuously increased with increasing abrasive particle size, abrasive concentration, polishing pressure, and polishing speed. However, the Ra continuously decreased with increasing abrasive particle size and abrasive concentration, increased with increasing polishing pressure, and initially decreased and then increased with increasing polishing speed. The established prediction model could accurately predict the relationship between the process parameters, MRR and Ra after polishing in CMP (relative prediction error of less than 10%), which could provide a theoretical basis for CMP of SiC.  相似文献   

14.
Slurry is widely used in polishing difficult-to-machine materials. However, it is accompanied with some issues, such as the agglomeration of abrasives and high disposal cost. Although using fixed abrasive grains instead of slurry can solve these issues, the problems of wear and of loading fixed abrasive grinding stones, which result in decrease of material removal rate (MRR), also need to be solved. Many researches have been conducted on the self-sharpening of fixed abrasive grinding stones. However, the self-sharpening of grinding stones is not efficient with ultra-low polishing pressure, which is not large enough to break bonds so as to expose new abrasives. In this study, a novel dress-free dry polishing process was proposed, where it combines plasma-assisted polishing and plasma-assisted dressing using Ar-based CF4 plasma and a vitrified-bonded grinding stone. Polishing experiments were conducted on sintered AlN wafer. Also, as the main component of vitrified bond materials, silica was etched using CF4 plasma, which is equivalent to the continuous dressing of grinding stone surfaces. Since new abrasives could be constantly exposed, a high MRR was maintained. Thus, a dress-free high integrity polishing process was realized. Moreover, the CF4 plasma irradiation increased the MRR twice, as CF4 plasma can not only dress a grinding stone in real time but can also modify AlN to AlF3, which can easily be removed.  相似文献   

15.
To obtain the great surface quality of Ti–6Al–4V and achieve high efficiency in the polishing process, the chemistry enhanced shear thickening polishing (C-STP) was proposed, and the polishing performance of different pH slurry was studied. The results show that the material removal rate gradually increases as the pH value decreases from 10 to 1, and the best surface quality is obtained at pH 2. The corrosion current density and potential were measured by potentiodynamic polarization under three typical pH values. It is confirmed that the most massive corrosion rate presents at pH 2, and the passive film is most susceptible to be produced at pH 10. The reaction resistance was measured by electrochemical impedance spectroscopy to clarify the polishing mechanism. Under acidic conditions, the chemical reaction product on the surface can be quickly removed by mechanical action of the abrasive. On the contrary, the passive film formed on the surface under the alkaline condition is difficult to be removed. The corrosion reaction products were determined by X-ray photoelectron, and the chemical reaction under acid-base environment was derived. MRR reached 107.3 nm/min under the selected process parameters, and the surface roughness (Sa) is reduced from 124 nm to 8.6 nm within 15 min.  相似文献   

16.
LED蓝宝石衬底的表面质量会极大影响到后续外延质量,进而影响到LED器件性能。蓝宝石研磨片经Al2O3磨粒粗抛液、SiO2磨粒精抛液下进行化学机械抛光(CMP),最终表面经原子力显微镜(AFM)所测表面粗糙度达到0.101nm,获得亚纳米级粗糙度超光滑表面,并呈现出原子台阶形貌。同时,通过使用Zygo表面形貌仪、AFM观察蓝宝石从研磨片经Al2O3粗抛液、SiO2精抛液抛光后的表面变化,阐述蓝宝石表面原子台阶形貌的形成原因,提出蓝宝石原子级超光滑表面形成的CMP去除机理。通过控制蓝宝石抛光中的工艺条件,获得a-a型、a-b型两种不同周期规律性的台阶形貌表面,并探讨不同周期规律性台阶形貌的形成机理。  相似文献   

17.
The paper establishes a new theoretical model for abrasive removal depth for polishing a sapphire wafer using chemical mechanical polishing with a polishing pad that has a cross pattern. The theoretical model uses binary image pixel division to calculate the pixel polishing times. An abrasive contact model for single-pixel multiple abrasive particles, to estimate the contact force between a single abrasive particle and the wafer, is then established. When the contact force is calculated, it is possible to calculate the abrasive depth of a single abrasive particle on the surface of the sapphire wafer. Using this theoretical model, carring a numerical simulation with a slurry of the same concentration, but with different abrasive particle diameters, determines the removal volume and average abrasive removal depth at each pixel position and the surface condition of the wafer. The simulation result is also compared with experimental data, in order to verify that the new model is feasible.  相似文献   

18.
基于超声加工所具有的加工效率和加工表面质量高等特性,提出了一种超声振动辅助固结磨粒化学机械复合抛光硅片新技术。对抛光工具及复合抛光实验系统的建立进行了描述,在此基础上开展硅片抛光表面形貌及材料去除机理的理论及实验研究,得到不同抛光力下的研究结果。所建立的理论模型及实验结果表明,超声振动辅助固结磨粒抛光有利于硅片表面质量及材料去除率的提高,且随着抛光力的增大,抛光表面质量下降,材料去除效果提高。  相似文献   

19.
In this work, we further developed the photochemically combined mechanical polishing (PCMP) method for finishing N-type gallium nitride (GaN) wafers. A core improvement is to design a novel polishing tool with phyllotactic distributed through-holes, through which the wafer surface underneath through-holes can receive ultraviolet (UV)-light for the photochemical oxidation, while the rest parts undergo mechanical polishing. During PCMP, the co-rotation of the wafer and polishing tool allows the wafer surface to undergo the uniform and high-frequency conversion of oxidation and polishing. Based on the designed PCMP system and apparatus, the fundamental issues arising from such an alternate processing mode, which is different from the parallel mode of conventional chemical mechanical polishing (CMP), were investigated. Results show that the technical features of PCMP depend on the nature of the photochemical oxidation of wafers themselves if the mechanical polishing procedure can sufficiently remove oxides in time. The material removal rate (MRR) is inversely proportional to the dislocation density of wafers. Under acidic conditions, the oxidation proceeds by the GaN monocrystal step orientation, allowing PCMP to clear surface/subsurface damages (SSDs) and to prepare step-terrace structures on the wafer surface. When the polishing solution (pH = 1.5) includes 0.1 M K2S2O8 oxidants and 10 wt% SiO2 abrasives, the surface roughness Sa attains 0.21 nm in 10 × 10 μm2, and the MRR reaches 275.3 nm/h. The present study shows that the phyllotactic distributed through-hole array structure designed for polishing tools offers rich possibilities for the innovation of polishing technologies combining with various oxidation approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号