首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
机床的热误差建模与补偿技术是提高机床加工精度的行之有效方法,而关键温度测点的选择是成功实施该技术的重要前提,由此提出一种基于偏相关-灰色综合关联度的温度测点优化方法。采用偏相关分析法,分析单一温度测点与主轴热误差间的相关性,剔除掉不相关或弱相关的测点,对剩余测点进行基于灰色综合关联度算法的分析,量化各测点与机床主轴热误差间的紧密程度,将测点数量由16个减少至4个。根据优化结果,建立4测点的热误差预测模型,分析表明,主轴Z向最大热误差由10.338μm减小至1.299μm,验证了温度测点优化结果的有效性。  相似文献   

2.
为探究数控机床主轴温度场信息与主轴热误差之间的非线性映射关系,提出一种基于人工蜂群优化算法(ABC)与广义回归神经网络的主轴热误差预测模型。首先,使用热成像技术布置温度传感器,并利用K-medoids算法对温度测点进行聚类分组,使用灰色关联度分析方法计算温度与主轴热误差之间的相关程度,进而提取出最佳热敏感点;其次,引入调节因子优化ABC算法的寻优过程,使用改进后的ABC网络确定GRNN网络的最佳参数及光滑因子;最后,以三轴数控加工中心为研究对象,进行温度数据与热误差数据的采集,建立基于ABC-GRNN热误差预测模型并与优化前进行比较。热误差实验结果表明,K-medoids算法与灰色关联分析相结合,有效避免了温度测点之间的多重共线性;ABC-GRNN模型可以更准确地预测出主轴各项误差值。  相似文献   

3.
针对影响机床热误差建模的机床温度场分布问题,提出了优化热关键点的新方法.借助于灰色系统理论的关联度分析方法,根据现场测得的统计数据序列,建立了灰关联分析模型,通过计算布置于机床上各个温度布点的温度传感器的温度采样序列值同机床定位误差之间的绝对灰色关联度值,最终从32个温度测点当中选择了4个点用于建立热误差补偿模型.最后基于四个测温关键点建模对Z轴的定位误差进行了补偿实验,结果证明补偿效果较好,所提出的热误差测点优化研究可以有效提高热误差模型的鲁棒性.  相似文献   

4.
数控机床主轴热误差是影响机床加工精度的主要因素之一,主轴热误差温度测点优化对于准确建立机床主轴热误差模型、提高机床精度具有十分重要的意义。提出一种基于模糊聚类与灰色理论的机床测温点优化方法,通过对主轴测温点进行模糊聚类分析,根据Xie-Beni有效性指标评定,将温度点归为几类,然后通过对模糊聚类后的测温点与主轴热误差进行灰色相关性分析,实现机床主轴温度测点的进一步优化。试验结果验证了该方法的可行性与有效性。  相似文献   

5.
在数控机床热误差补偿技术中,温度测点的选择与优化是一个难点。文章采用逐步线性回归方法对核电轮槽铣床主轴箱的温度测点进行优化与建模。首先利用瞬态热-结构耦合分析了主轴箱在粗加工时的温升和热变形,再通过逐步线性回归方法对温度测点进行优化,利用优化后的温度测点建立了主轴X,Y,Z三个方向的热误差模型,最后对主轴箱在精加工运行时对所建立的模型进行了验证,结果表明:该方法不仅可以有效减小温度测点数目,还能保证模型的预测精度,三个方向的热误差均减小到5μm以下。  相似文献   

6.
为建立更加准确的电主轴热误差预测模型,以某台电主轴为实验对象,测得10 000 r/min转速时的温升和热伸长数据。利用模糊聚类结合灰色关联度分析(FCM-GRA)理论,优化温度测点。采用鲸鱼优化算法(WOA)和支持向量回归(SVR)相结合的方法,建立电主轴的热误差预测模型。对比多元线性回归、SVR和WOA-SVR预测模型预测效果。结果表明:鲸鱼算法优化后的支持向量回归预测模型可以更有效预测电主轴的热误差,将拟合误差最大值降低到3.72 μm,均方根误差降低至1.33 μm,验证了所提方法的可行性。  相似文献   

7.
为了提高数控机床热误差模型的预测精度,以某型号立式加工中心为实验对象,采用模糊聚类与灰色综合关联度相结合的方法对机床测温点进行优化,将测温点从8个减少到3个。利用遗传算法(GA)优化的Elman神经网络建立了主轴热漂移误差预测模型,通过实例比较了GA-Elman神经网络模型与普通Elman神经网络模型的预测效果。结果表明,与普通Elman神经网络所建的预测模型相比,GA-Elman神经网络模型对主轴轴向热漂移误差的预测精度较高,残差较小,网络的泛化能力较好。  相似文献   

8.
针对VMC1165B立式加工中心,进行机床热特性及温度场分析,基于试验数据,避免进行热机制分析和计算温度场边界条件。采用模糊聚类结合Pearson相关系数法选出4个稳健性温度敏感点建立热误差模型,验证模型预测性能,并与模糊聚类结合灰色关联度选出的非稳健性温度敏感点热误差预测模型对比。结果表明:稳健性温度敏感点热误差预测模型的机床 X 向最大残差下降了25.44%, Y 向最大残差、平均绝对误差和均方差分别下降了25%、23.03%和33.25%。  相似文献   

9.
针对影响机床热误差建模的温度场分布问题,提出一种热模态分析方法,对机床热误差建模温度测点进行优化选择。以数控机床主轴温度场分析为例,利用热模态方法得到主轴各模态的时间常数、温度场及热变形模态形状,从而确定温度测点的最优位置。并通过实验验证了所建立模型的准确性与鲁棒性。  相似文献   

10.
在热误差建模中,温度测点的优化选择至关重要。提出了运用相关性方法,分析测点温度与主轴热漂移之间的关系,找到相关性较高的测点位置,实现温度布点的优化选择。在此基础上采用模拟退火遗传算法( GSA)优化BP神经网络的方法建立热误差模型,并通过实验验证。结果表明:优化的热误差模型能够跳出局部最优而达到全局最优解,得到的误差模型拟合值更加接近实测误差值;基于GSA优化的BP网络模型较传统的神经网络模型有较高的精度及更强鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号