首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aims/hypothesis Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca2+ channel CaV2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. Methods Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case–control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case–control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. Results The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case–control sample [odds ratio (OR) 1.4, 95% CI 1.0–2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0–1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1–1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D I) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D I over time in the Botnia prospective cohort (p = 0.05). Conclusions/interpretation We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

2.
Aims/hypothesis Mutations at the gene encoding wolframin (WFS1) cause Wolfram syndrome, a rare neurological condition. Associations between single nucleotide polymorphisms (SNPs) at WFS1 and type 2 diabetes have recently been reported. Thus, our aim was to replicate those associations in a northern Swedish case–control study of type 2 diabetes. We also performed a meta-analysis of published and previously unpublished data from Sweden, Finland and France, to obtain updated summary effect estimates. Methods Four WFS1 SNPs (rs10010131, rs6446482, rs752854 and rs734312 [H611R]) were genotyped in a type 2 diabetes case–control study (n = 1,296/1,412) of Swedish adults. Logistic regression was used to assess the association between each WFS1 SNP and type 2 diabetes, following adjustment for age, sex and BMI. We then performed a meta-analysis of 11 studies of type 2 diabetes, comprising up to 14,139 patients and 16,109 controls, to obtain a summary effect estimate for the WFS1 variants. Results In the northern Swedish study, the minor allele at rs752854 was associated with reduced type 2 diabetes risk [odds ratio (OR) 0.85, 95% CI 0.75–0.96, p = 0.010]. Borderline statistical associations were observed for the remaining SNPs. The meta-analysis of the four independent replication studies for SNP rs10010131 and correlated variants showed evidence for statistical association (OR 0.87, 95% CI 0.82–0.93, p = 4.5 × 10−5). In an updated meta-analysis of all 11 studies, strong evidence of statistical association was also observed (OR 0.89, 95% CI 0.86–0.92; p = 4.9 × 10−11). Conclusions/interpretation In this study of WFS1 variants and type 2 diabetes risk, we have replicated the previously reported associations between SNPs at this locus and the risk of type 2 diabetes. An erratum to this article can be found at  相似文献   

3.
Aims/hypothesis Recently, several groups have carried out whole-genome association studies in European and European-origin populations and found novel type 2 diabetes-susceptibility genes, fat mass and obesity associated (FTO), solute carrier family 30 (zinc transporter), member 8 (SLC30A8), haematopoietically expressed homeobox (HHEX), exostoses (multiple) 2 (EXT2), CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1), cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), which had not been in the list of functional candidates. The aim of this study was to determine the association between single nucleotide polymorphisms (SNPs) in these genes and type 2 diabetes in participants from the Japanese population. Methods Sixteen previously reported SNPs were genotyped in 864 Japanese type 2 diabetes individuals (535 men and 329 women; age 63.1 ± 9.5 years (mean±SD), BMI 24.3 ± 3.9 kg/m2) and 864 Japanese control individuals (386 men and 478 women; age 69.5 ± 6.8 years, BMI 23.8 ± 3.7 kg/m2). Results The SNPs rs5015480 [odds ratio (OR) = 1.46 (95% CI 1.20–1.77), p = 2.0 × 10−4], rs7923837 [OR = 1.40 (95% CI 1.17–1.68), p = 2.0 × 10−4] and rs1111875 [OR = 1.30 (95% CI 1.11–1.52), p = 0.0013] in HHEX were significantly associated with type 2 diabetes with the same direction as previously reported. SNP rs8050136 in FTO was nominally associated with type 2 diabetes [OR = 1.22 (95% CI 1.03–1.46), p = 0.025]. SNPs in other genes such as rs7756992 in CDKAL1, rs10811661 in CDKN2B and rs13266634 in SLC30A8 showed nominal association with type 2 diabetes. rs7756992 in CDKAL1 and rs10811661 in CDKN2B were correlated with impaired pancreatic beta cell function as estimated by the homeostasis model assessment beta index (p = 0.023, p = 0.0083, respectively). Conclusions/interpretation HHEX is a common type 2 diabetes-susceptibility gene across different ethnic groups. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users. M. Horikoshi and K. Hara contributed equally to this study.  相似文献   

4.
Aims/hypothesis A recent genome-wide association study identified the SLC30A8 rs13266634 polymorphism encoding an Arg325Trp polymorphism in the zinc transporter protein member 8 (ZnT-8) to be associated with type 2 diabetes. Here, we investigate whether the polymorphism is related to altered insulin release in response to intravenous and oral glucose loads in non-diabetic offspring of type 2 diabetic patients. Methods We genotyped SLC30A8 rs13266634 in 846 non-diabetic offspring of type 2 diabetic patients from five different white populations: Danish (n = 271), Finnish (n= 217), German (n = 149), Italian (n= 109) and Swedish (n= 100). Participants were subjected to both IVGTTs and OGTTs, and measurements of insulin sensitivity. Results Homozygous carriers of the major type 2 diabetes C risk-allele showed a 19% decrease in first-phase insulin release (0–10 min) measured during the IVGTT (CC 3,624 ± 3,197; CT 3,763 ± 2,674; TT 4,478 ± 3,032 pmol l−1 min−1, mean ± SD; p = 0.007). We found no significant genotype effect on insulin release measured during the OGTT or on estimates of insulin sensitivity. Conclusions/interpretation Of European non-diabetic offspring of type 2 diabetes patients, 46% are homozygous carriers of the Arg325Trp polymorphism in ZnT-8, which is known to associate with type 2 diabetes. These diabetes-prone offspring are characterised by a 19% decrease in first-phase insulin release following an intravenous glucose load, suggesting a role for this variant in the pathogenesis of pancreatic beta cell dysfunction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

5.
Aims and hypothesis  Variants of the FTO (fat mass and obesity associated) gene are associated with obesity and type 2 diabetes in white Europeans, but these associations are not consistent in Asians. A recent study in Asian Indian Sikhs showed an association with type 2 diabetes that did not seem to be mediated through BMI. We studied the association of FTO variants with type 2 diabetes and measures of obesity in South Asian Indians in Pune. Methods  We genotyped, by sequencing, two single nucleotide polymorphisms, rs9939609 and rs7191344, in the FTO gene in 1,453 type 2 diabetes patients and 1,361 controls from Pune, Western India and a further 961 population-based individuals from Mysore, South India. Results  We observed a strong association of the minor allele A at rs9939609 with type 2 diabetes (OR per allele 1.26; 95% CI 1.13–1.40; p = 3 × 10−5). The variant was also associated with BMI but this association appeared to be weaker (0.06 SDs; 95% CI 0.01–0.10) than the previously reported effect in Europeans (0.10 SDs; 95% CI 0.09–0.12; heterogeneity p = 0.06). Unlike in the Europeans, the association with type 2 diabetes remained significant after adjusting for BMI (OR per allele for type 2 diabetes 1.21; 95% CI 1.06–1.37; p = 4.0 × 10−3), and also for waist circumference and other anthropometric variables. Conclusions  Our study replicates the strong association of FTO variants with type 2 diabetes and similar to the study in North Indians Sikhs, shows that this association may not be entirely mediated through BMI. This could imply underlying differences between Indians and Europeans in the mechanisms linking body size with type 2 diabetes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. C. S. Janipalli, S. Bhaskar, S. R. Kulkarni and R. M. Freathy contributed equally to this study.  相似文献   

6.
7.
Aim/hypothesis  Recently, variants in WFS1 have been shown to be associated with type 2 diabetes. We aimed to examine metabolic risk phenotypes of WFS1 variants in glucose-tolerant people and in individuals with abnormal glucose regulation. Methods  The type 2 diabetes-associated WFS1 variant rs734312 (His611Arg) was studied in the population-based Inter99 cohort involving 4,568 glucose-tolerant individuals and 1,471 individuals with treatment-naive abnormal glucose regulation, and in an additional 3,733 treated type 2 diabetes patients. Results  The WFS1 rs734312 showed a borderline significant association with type 2 diabetes with directions and relative risks consistent with previous reports. In individuals with abnormal glucose regulation, the diabetogenic risk A allele of rs734312 was associated in an allele-dependent manner with a decrease in insulinogenic index (p = 0.025) and decreased 30-min serum insulin levels (p = 0.047) after an oral glucose load. In glucose-tolerant individuals the same allele was associated with increased fasting serum insulin concentration (p = 0.019) and homeostasis model assessment of insulin resistance (HOMA-IR; p = 0.026). To study the complex interaction of WFS1 rs734312 on insulin release and insulin resistance we introduced Hotelling’s T 2 test. Assuming bivariate normal distribution, we constructed standard error ellipses of the insulinogenic index and HOMA-IR when stratified according to glucose tolerance status around the means of each WFS1 rs734312 genotype level. The interaction term between individuals with normal glucose tolerance and abnormal glucose regulation on the insulinogenic index and HOMA-IR was significantly associated with the traits (p = 0.0017). Conclusions/interpretation  Type 2 diabetes-associated risk alleles of WFS1 are associated with estimates of a decreased pancreatic beta cell function among middle-aged individuals with abnormal glucose regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

8.
Aims/hypothesis In the present study, we sought to examine the evidence that LMNA variants are associated with type 2 diabetes and quantitative metabolic traits in French Europid individuals. Methods We genotyped 24 single nucleotide polymorphisms (SNPs) spanning the LMNA gene in 3,093 case–control participants. The association between LMNA SNPs and quantitative metabolic traits was also examined in the 1,674 normoglycaemic adults who made up the control cohort. Results SNP rs505058, a synonymous SNP (D446D) in exon 7, showed nominal evidence of association with type 2 diabetes [p = 0.003, odds ratio (OR) 1.30 (95% CI 1.09–1.56)] in French Europids. A meta-analysis of available rs505058 genotype data from 7,819 participants provided support for a modest association of rs505058 with type 2 diabetes [p = 0.003, OR 1.19 (95% CI 1.06–1.35)]. We found no evidence (p = 0.91) that the tag SNP rs4641 is associated with type 2 diabetes. However, a meta-analysis of all available rs4641 genotype data in a total of 15,591 participants produced borderline evidence of association [p = 0.054, OR 1.05 (95% CI 1.00–1.11)]. SNP rs6669212, in the 3′ untranslated region of LMNA, exhibited suggestive associations with WHR (p = 0.013), fasting serum levels of total cholesterol (p = 0.023) and triacylglycerol (p = 0.015). We emphasise that these quantitative trait associations are not corrected for multiple testing. Conclusions/interpretation The available data do not support a major effect of common LMNA variation on type 2 diabetes susceptibility in northern Europeans. Further large-scale studies are required to conclusively establish the extent to which LMNA variants have an impact on quantitative metabolic traits. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

9.
10.
Aims/hypothesis The expression of the four and a half LIM domains 1 gene (FHL1) is increased in the muscle of individuals who show an improvement in insulin sensitivity index (S I) after 20 weeks of exercise training. The aim of the present study was to investigate associations between three FHL1 single nucleotide polymorphisms (SNPs) and variables derived from an IVGTT, both in the sedentary state and in response to exercise training, in participants in the HERITAGE Family Study. Materials and methods SNPs were typed using fluorescence polarisation methodology. Analyses were performed separately by sex and in black and white individuals. Results In black participants, no associations were found with any of the SNPs. In white women (n = 207), SNP rs9018 was associated with the disposition index (D I), which is calculated as S I generated from the MINMOD program (×10−4 min−1[μU/ml]−1) multiplied by acute insulin response to glucose (AIRg; pmol/l × 10 min), and the glucose disappearance index (K g) training responses (p = 0.016 and p = 0.008, respectively). In white men (n = 222), all SNPs were associated with fasting glucose levels (p ≤ 0.05) and SNP rs2180062 with the insulin sensitivity index (S I) (p = 0.04) in the sedentary state. Two SNPs were associated with fasting insulin training response. Fasting insulin decreased to a greater extent in carriers of the rs2180062 C allele (p = 0.01) and rs9018 T allele (p = 0.04). With exercise training, S I (×10−4 min−1[μU/ml]−1: 0.68 ± 0.20 vs −0.77 ± 0.44, p = 0.046), D I (319 ± 123 vs –528 ± 260, p = 0.006) and K g (per 100 min: 0.09 ± 0.04 vs −0.14 ± 0.8, p = 0.03) improved more in the C allele carriers at rs2180062 than in the T allele carriers. Conclusions/interpretation Fasting insulin and S I responses to exercise training were associated with DNA sequence variation in FHL1 in white men. Whether these associations exist only in white men remains to be investigated. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

11.
Aims/hypothesis  Two recent genome-wide association studies have identified several novel type 2 diabetes susceptibility variants in intron 15 of the KCNQ1 gene. We aimed to evaluate the effects of the variants in KCNQ1 on type 2 diabetes and metabolic traits in the population of mainland China. Methods  Three candidate single nucleotide polymorphisms were genotyped in 1,912 individuals with type 2 diabetes and 2,041 normal controls using the ligase detection reaction method. Results  We confirmed the association of KCNQ1 with type 2 diabetes in the population of mainland China. Allele frequency ORs of the three single nucleotide polymorphisms (SNPs) were: rs2237892 (OR 1.19, 95% CI 1.08–1.31, p = 3.0 × 10−4); rs2237895 (OR 1.20, 95% CI 1.09–1.32, p = 1.9 × 10−4); and rs2237897 (OR 1.24, 95% CI 1.13–1.36, p = 3.9 × 10−5). We also found a significant difference in the distribution of the global haplotypes between the type 2 diabetes group and the normal control group (p = 2.6 × 10−5). In addition, in the control group SNP rs2237892 was marginally associated with increasing fasting plasma glucose and SNPs rs2237892 and rs2237897 were associated with HbA1c. Furthermore, for all three variants, homozygous carriers of the diabetes-associated allele had significantly decreased BMI and waist circumferences. Conclusions/interpretation  Our investigation confirmed the effects of KCNQ1 variants on type 2 diabetes risk in the Chinese population. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Y. Liu and D. Z. Zhou contributed equally to this study.  相似文献   

12.
Aims/hypothesis We evaluated the association of QT interval corrected for heart rate (QTc) and resting heart rate (rHR) with mortality (all-causes, cardiovascular, cardiac, and ischaemic heart disease) in subjects with type 1 and type 2 diabetes. Methods We followed 523 diabetic patients (221 with type 1 diabetes, 302 with type 2 diabetes) who were recruited between 1974 and 1977 in Switzerland for the WHO Multinational Study of Vascular Disease in Diabetes. Duration of follow-up was 22.6 ± 0.6 years. Causes of death were obtained from death certificates, hospital records, post-mortem reports, and additional information given by treating physicians. Results In subjects with type 1 diabetes QTc, but not rHR, was associated with an increased risk of: (1) all-cause mortality (hazard ratio [HR] 1.10 per 10 ms increase in QTc, 95% CI 1.02–1.20, p = 0.011); (2) mortality due to cardiovascular (HR 1.15, 1.02–1.31, p = 0.024); and (3) mortality due to cardiac disease (HR 1.19, 1.03–1.36, p = 0.016). Findings for subjects with type 2 diabetes were different: rHR, but not QTc was associated with mortality due to: (1) all causes (HR 1.31 per 10 beats per min, 95% CI 1.15–1.50, p < 0.001); (2) cardiovascular disease (HR 1.43, 1.18–1.73, p < 0.001); (3) cardiac disease (HR 1.45, 1.19–1.76, p < 0.001); and (4) ischaemic heart disease (HR 1.52, 1.21–1.90, p < 0.001). Effect modification of QTc by type 1 and rHR by type 2 diabetes was statistically significant (p < 0.05 for all terms of interaction). Conclusions/interpretation QTc is associated with long-term mortality in subjects with type 1 diabetes, whereas rHR is related to increased mortality risk in subjects with type 2 diabetes.  相似文献   

13.
Aims/hypothesis  Type 1 diabetes in children is characterised by autoimmune destruction of pancreatic beta cells and the presence of certain risk genotypes. In adults the same situation is often referred to as latent autoimmune diabetes in adults (LADA). We tested whether genetic markers associated with type 1 or type 2 diabetes could help to discriminate between autoimmune and non-autoimmune diabetes in young (15–34 years) and middle-aged (40–59 years) diabetic patients. Methods  In 1,642 young and 1,619 middle-aged patients we determined: (1) HLA-DQB1 genotypes; (2) PTPN22 and INS variable-number tandem repeat (VNTR) polymorphisms; (3) two single nucleotide polymorphisms (rs7903146 and rs10885406) in the TCF7L2 gene; (4) glutamic acid decarboxylase (GAD) and IA-2-protein tyrosine phosphatase-like protein (IA-2) antibodies; and (5) fasting plasma C-peptide. Results  Frequency of risk genotypes HLA-DQB1 (60% vs 25%, p= 9.4×10−34; 45% vs 18%, p= 1.4 × 10−16), PTPN22 CT/TT (34% vs 26%, p= 0.0023; 31% vs 23%, p= 0.034), INS VNTR class I/I (69% vs 53%, p= 1.3 × 10−8; 69% vs 51%, p= 8.5 × 10−5) and INS VNTR class IIIA/IIIA (75% vs 63%, p=  4.3 × 10−6; 73% vs 60%, p= 0.008) was increased in young and middle-aged GAD antibodies (GADA)-positive compared with GADA-negative patients. The type 2 diabetes-associated genotypes of TCF7L2 CT/TT of rs7903146 were significantly more common in young GADA-negative than in GADA-positive patients (53% vs 43%; p= 0.0004). No such difference was seen in middle-aged patients, in whom the frequency of the CT/TT genotypes of TCF7L2 was similarly increased in GADA-negative and GADA-positive groups (55% vs 56%). Conclusions/interpretation  Common variants in the TCF7L2 gene help to differentiate young but not middle-aged GADA-positive and GADA-negative diabetic patients, suggesting that young GADA-negative patients have type 2 diabetes and that middle-aged GADA-positive patients are different from their young GADA-positive counterparts and share genetic features with type 2 diabetes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. G. Sundkvist died in September 2006.  相似文献   

14.
Aims/hypothesis  Recent genome-wide association studies in East Asian populations reported that single nucleotide polymorphisms (SNPs) in KCNQ1 are associated with type 2 diabetes. The aim of this study was to validate this finding in a Chinese population. Methods  We genotyped four SNPs, rs2074196, rs2237892, rs2237895 and rs2237897, in a group of 3,503 Shanghai Chinese individuals, comprising 1,769 type 2 diabetic patients and 1,734 normoglycaemic controls. Both the cases and the controls were extensively phenotyped for anthropometric and biochemical traits related to glucose metabolism. Arginine stimulation tests under fasting conditions were performed in a subgroup of 466 cases. Results  All four of the SNPs were associated with type 2 diabetes, with rs2237892 showing strongest evidence for association (OR 1.532, 95% CI 1.381–1.698, p = 5.0 × 10−16). The SNP rs2237897 was associated with both acute insulin and C-peptide response after arginine stimulation in a subgroup of cases (p = 0.0471 and p = 0.0156, respectively). The SNP rs2237895 was associated with both first- and second-phase insulin secretion in the controls (p = 0.0334 and p = 0.0002, respectively). Conclusions/interpretation  In this study we found that KCNQ1 was associated with type 2 diabetes susceptibility in a Chinese population, possibly through its effect on beta cell function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

15.
Aims/hypothesis Recent genome-wide association studies performed in selected patients and control participants have provided strong support for several new type 2 diabetes susceptibility loci. To get a better estimation of the true risk conferred by these novel loci, we tested a completely unselected population of type 2 diabetes patients from a Norwegian health survey (the HUNT study). Methods We genotyped single nucleotide polymorphisms (SNPs) in PKN2, IGFBP2, FLJ39370 (also known as C4ORF32), CDKAL1, SLC30A8, CDKN2B, HHEX and FTO using a Norwegian population-based sample of 1,638 patients with type 2 diabetes and 1,858 non-diabetic control participants (the HUNT Study), for all of whom data on BMI, WHR, cholesterol and triacylglycerol levels were available. We used diabetes, measures of obesity and lipid values as phenotypes in case-control and quantitative association study designs. Results We replicated the association with type 2 diabetes for rs10811661 in the vicinity of CDKN2B (OR 1.20, 95% CI: 1.06–1.37, p = 0.004), rs9939609 in FTO (OR 1.14, 95% CI: 1.04–1.25, p = 0.006) and rs13266634 in SLC30A8 (OR 1.20, 95% CI: 1.09–1.33, p = 3.9 × 10−4). We found borderline significant association for the IGFBP2 SNP rs4402960 (OR 1.10, 95% CI: 0.99–1.22). Results for the HHEX SNP (rs1111875) and the CDKAL1 SNP (rs7756992) were non-significant, but the magnitude of effect was similar to previous estimates. We found no support for an association with the less consistently replicated FLJ39370 or PKN2 SNPs. In agreement with previous studies, FTO was most strongly associated with BMI (p = 8.4 × 10−4). Conclusions/interpretation Our data show that SNPs near IGFBP2, CDKAL1, SLC30A8, CDKN2B, HHEX and FTO are also associated with diabetes in non-selected patients with type 2 diabetes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

16.
Q. Qi  Y. Wu  H. Li  R. J. F. Loos  F. B. Hu  L. Sun  L. Lu  A. Pan  C. Liu  H. Wu  L. Chen  Z. Yu  X. Lin 《Diabetologia》2009,52(5):834-843
Aims/hypothesis  The GCKR rs780094 and GCK rs1799884 polymorphisms have been reported to be associated with dyslipidaemia and type 2 diabetes in white Europeans. The aim of this study was to replicate these associations in Han Chinese individuals and to identify the potential mechanisms underlying these associations. Methods  The single nucleotide polymorphisms rs780094 and rs1799884 were genotyped in a population-based sample of Han Chinese individuals (n = 3,210) and tested for association with risk of type 2 diabetes and related phenotypes. Results  The GCKR rs780094 A allele was marginally associated with reduced risk of type 2 diabetes (OR 0.85, 95% CI 0.73–1.00, p value under an additive model [p (add)] = 0.05) and significantly associated with reduced risk of impaired fasting glucose (IFG) or type 2 diabetes (OR 0.86, 95% CI 0.77–0.96, p [add] = 0.0032). It was also significantly associated with decreased fasting glucose and increased HOMA of beta cell function (HOMA-B) and fasting triacylglycerol levels (p [add] = 0.0169–5.3 × 10−6), but not with HOMA of insulin sensitivity (HOMA-S). The associations with type 2 diabetes and IFG remained significant after adjustment for BMI, while adjustment for HOMA-B abolished the associations. The GCKR rs780094 was also associated with obesity and BMI, independently of its association with type 2 diabetes. The GCK rs1799884 A allele was significantly associated with decreased HOMA-B (p [add] = 0.0005), but not with type 2 diabetes or IFG. Individuals with increasing numbers of risk alleles for both variants had significantly lower HOMA-B (p [add] = 5.8 × 10−5) in the combined analysis. Conclusions/interpretation  Consistent with observations in white Europeans, the GCKR rs780094 polymorphism contributes to the risk of type 2 diabetes and dyslipidaemia in Han Chinese individuals. In addition, we showed that the effect on type 2 diabetes is probably mediated through impaired beta cell function rather than through obesity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Q. Qi and Y. Wu contributed equally to this study.  相似文献   

17.
Aims/hypothesis  We studied the physiological, metabolic and hormonal mechanisms underlying the elevated risk of type 2 diabetes in carriers of TCF7L2 gene. Methods  We undertook genotyping of 81 healthy young Danish men for rs7903146 of TCF7L2 and carried out various beta cell tests including: 24 h glucose, insulin and glucagon profiles; OGTT; mixed meal test; IVGTT; hyperglycaemic clamp with co-infusion of glucagon-like peptide (GLP)-1 or glucose-dependent insulinotropic polypeptide (GIP); and a euglycaemic–hyperinsulinaemic clamp combined with glucose tracer infusion to study hepatic and peripheral insulin action. Results  Carriers of the T allele were characterised by reduced 24 h insulin concentrations (p < 0.05) and reduced insulin secretion relative to glucose during a mixed meal test (beta index: p < 0.003), but not during an IVGTT. This was further supported by reduced late-phase insulinotropic action of GLP-1 (p = 0.03) and GIP (p = 0.07) during a 7 mmol/l hyperglycaemic clamp. Secretion of GLP-1 and GIP during the mixed meal test was normal. Despite elevated hepatic glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations (p < 0.02) suggesting altered alpha cell function. Conclusions/interpretation  Elevated hepatic glucose production and reduced insulinotropic effect of incretin hormones contribute to an increased risk of type 2 diabetes in carriers of the rs7903146 risk T allele of TCF7L2. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

18.
Aims/hypothesis  Additional susceptibility loci for type 2 diabetes have been identified by a meta-analysis of genome-wide association studies (GWASs) in European populations. To examine further the roles of these new loci, we performed a replication study for the association of these single-nucleotide polymorphism (SNP) loci with the disease in three independent Japanese populations. Methods  We genotyped seven of the 11 SNPs that emerged in stage 2 of the meta-analysis for European GWASs (rs864745 in JAZF1, rs12779790 near CDC123/CAMK1D, rs7961581 near TSPAN8/LGR5, rs4607103 near ADAMTS9, rs10923931 in NOTCH2, rs1153188 near DCD and rs9472138 near VEGFA) for three independent Japanese populations (first set, 1,630 type 2 diabetes patients vs 1,064 controls; second set, 1,272 type 2 diabetes patients vs 856 controls; third set, 486 type 2 diabetes patients vs 936 controls) using a TaqMan assay. The association of the SNP loci in each population was analysed using a logistic regression analysis, adjusting for age, sex and BMI, and the data were evaluated by a meta-analysis. Results  A meta-analysis for the three case–control studies identified a nominal association of rs864745 in JAZF1 with type 2 diabetes (OR 1.148, 95% CI 1.034–1.275, p = 0.0098, corrected p = 0.069). The association of other loci did not reach statistically significant levels (nominal p > 0.05). Conclusions/interpretation  From these results the contribution of these seven loci in conferring susceptibility to type 2 diabetes is considered minor in the Japanese population, if they are present. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

19.
Aims/hypothesis  New genetic variants associated with susceptibility to type 2 diabetes mellitus have been discovered in recent genome-wide association (GWA) studies. The aim of the present study was to examine the association between these diabetogenic variants and gestational diabetes mellitus (GDM). Methods  The study included 869 Korean women with GDM and 345 female and 287 male Korean non-diabetic controls. We genotyped the single nucleotide polymorphisms (SNPs) rs7756992 and rs7754840 in CDKAL1; rs564398, rs1333040, rs10757278 and rs10811661 in the CDKN2A−CDKN2B region; rs8050136 in FTO; rs1111875, rs5015480 and rs7923837 in HHEX; rs4402960 in IGF2BP2; and rs13266634 in SLC30A8. In addition, rs7903146 and rs12255372 in TCF7L2; rs5215 and rs5219 in KCNJ11; and rs3856806 and rs1801282 in PPARG were genotyped. The genotype frequencies in the GDM patients were compared with those in the non-diabetic controls. Results  Compared with controls (men and women combined), GDM was associated with rs7756992 and rs7754840 (OR 1.55, 95% CI 1.34–1.79, p = 4.17 × 10−9) in CDKAL1; rs10811661 (OR 1.49, 95% CI 1.29–1.72, p = 1.05 × 10−7) in the CDKN2A−CDKN2B region; rs1111875 (OR 1.27, 95% CI 1.09–1.49, p = 0.003), rs5015480, and rs7923837 in HHEX; rs4402960 (OR 1.18, 95% CI 1.01–1.38, p = 0.03) in IGF2BP2; rs13266634 (OR 1.24, 95% CI 1.07–1.43, p = 0.005) in SLC30A8; and rs7903146 (OR 1.58, 95% CI 1.03–2.43, p = 0.038) in TCF7L2. The risk alleles of the SNPs rs7756992 and rs7754840 in CDKAL1; rs10811661 in the CDKN2A–CDKN2B region; and rs1111875, rs5015480 and rs7923837 in HHEX were associated with significant decreases in the insulin AUC during a 100 g OGTT performed at the time of diagnosis of GDM. Conclusions/interpretation  Some of the type 2 diabetes-associated genetic variants that were discovered in the recent GWA studies are also associated with GDM in Koreans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Y. M. Cho and T. H. Kim contributed equally to this study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号