首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study is to investigate the effects of two-stage injection and exhaust gas recirculation (EGR) on the spray behavior and exhaust emission characteristics in diesel-ethanol fuel blends fueled four-cylinder diesel engine. The spray behavior is analyzed from the spray development process, spray tip penetration, and spray cone angle, which are obtained from the spray images. The combustion and exhaust emission characteristics are measured from the four-cylinder diesel engine with a common-rail injection system.The experimental results revealed that the increase of the pilot injection amount causes the fast development of the injected pilot spray, and the penetration difference among the main sprays is less than that among the pilot sprays. An increase in the ethanol blending ratio causes an increase in the ignition delay in the pilot combustion, but the main combustion is little influenced by the ethanol blending. The increase in the pilot injection amount shows the reduction effects of NOx emissions when the pilot injection timing is advanced beyond BTDC 20°. The concentration of soot emissions shows a decreasing pattern according to the advance of the pilot injection and the decrease in the pilot injection amount. The CO emissions increase with the advance of the pilot injection timing, the increase in the pilot injection amount, and the ethanol blending ratio. In addition, the increase in the ethanol blending ratio and the advance of the pilot injection timing induce an increase in the HC emissions. The increase in the pilot injection amount induces a slight increase in the HC emissions.  相似文献   

2.
The purpose of this study was to analyze the exhaust emissions of DME fuel through experimental and numerical analyses of in-cylinder spray behavior. To investigate this behavior, spray characteristics such as the spray tip penetration, spray cone angle, and spray targeting point were studied in a re-entrant cylinder shape under real combustion chamber conditions. The combustion performance and exhaust emissions of the DME-fueled diesel engine were calculated using KIVA-3V. The numerical results were validated with experimental results from a DME direct injection compression ignition engine with a single cylinder.The combustion pressure and IMEP have their peak values at an injection timing of around BTDC 30°, and the peak combustion temperature, exhaust emissions (soot, NOx), and ISFC had a lower value. The HC and CO emissions from DME fuel showed lower values and distributions in the range from BTDC 25° to BTDC 10° at which a major part of the injected DME spray was distributed into the piston bowl area. When the injection timing advanced to before BTDC 30°, the HC and CO emissions showed a rapid increase. When the equivalence ratio increased, the combustion pressure and peak combustion temperature decreased, and the peak IMEP was retarded from BTDC 25° to BTDC 20°. In addition, NOx emissions were largely decreased by the low combustion temperature, but the soot emissions increased slightly.  相似文献   

3.
Su Han Park  Chang Sik Lee 《Fuel》2011,90(2):748-755
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NOx emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.  相似文献   

4.
This paper describes the combustion and emission characteristics as well as engine performance according to the narrow spray angle and advanced injection timing for homogeneous charge compression ignition (HCCI) combustion in dimethyl ether (DME) fueled diesel engine. The bowl shape of the piston head was modified to apply the narrow spray angle and advanced injection timing. The spray, combustion and emission characteristics in a DME HCCI engine were calculated by using numerical method of the KIVA-3 V code coupled with the detailed chemical kinetic model of DME oxidation. Model validation was conducted by a comparison of experimental results for the accurate prediction. The injection timing ranging from BTDC 80° to BTDC 10° and two fuel masses were selected to evaluate the combustion, emission and engine performance. The calculated results were in good accordance with the experimental results of the combustion and emissions of the engine. Nitrogen oxide (NOx) emissions at injection timing before BTDC 30° remarkably decreased, while hydrocarbon (HC) and carbon monoxide (CO) emissions at an injection timing of BTDC 70° showed high levels. Also, the IMEP and ISFC have decreasing and increasing patterns respectively as the injection timing was advanced.  相似文献   

5.
The aim of this study is to investigate the effects of dimethyl ether (DME) fuel on the engine performance and the exhaust emission reduction characteristics in a DME fueled four-cylinder diesel engine with a common rail injection system, as well as an injection characteristics and a spray behavior. The injection rate meter and the spray visualization system are utilized for the analysis of the injection characteristics and the spray behavior. Also, the modified four-cylinder diesel engine with 1.6 liter engine size is used for the investigation of the engine performance and the exhaust emission reduction characteristics of DME fuel.Based on the experimental investigation, it revealed that the injection quantity of DME fuel was larger than that of the ultra low sulfur diesel (ULSD) due to the high return fuel pressure at the same injection pressure and energizing duration. In this case, the injection quantity of DME fuel is increased by extension of real injection duration due to return fuel pressure.In combustion characteristics, the peak combustion pressure and the ignition delay of DME fuel are higher and faster than those of ULSD, respectively. The NOx emission of DME fuel shows slightly higher than that of ULSD at the same engine load condition, and the soot emission of DME fuel is nearly zero level. The oxygenated component and volatility of DME resulted in HC and CO emissions that were lower than those of diesel.  相似文献   

6.
Myung Yoon Kim  Chang Sik Lee   《Fuel》2007,86(17-18):2871-2880
The aim of this work was to investigate the effect of narrow fuel spray angle injection and dual injection strategy on the exhaust emissions of a common-rail diesel engine. To achieve successful homogeneous charge compression ignition by an early timing injection, a narrowed spray cone angle injector and a reduced compression ratio were employed. The combination of homogeneous charge compression ignition (HCCI) combustion and conventional diesel combustion was studied to examine the exhaust emission and combustion characteristics of the engine under various fuel injection parameters, such as injection timings of the first and second spray.The results showed that a dual injection strategy consisting of an early timing for the first injection for HCCI combustion and a late timing for the second injection was effective to reduce the NOx emissions while it suppress the deterioration of the combustion efficiency caused by the HCCI combustion.  相似文献   

7.
The influence of direct water injection (DWI) on emissions from a multivariable large-scale (6–18 cyl, ~ 1 MW/cyl) diesel engine is reported, using a combined injection valve and nozzle that allows for injection of water and fuel oil into the cylinder. This method allows for injecting a relatively large amount of water without derating the engine power and NOx emissions can be more than halved by DWI. Indeed DWI decreases combustion temperatures and NOx emissions, but it gives somewhat increased (yet not problematic) emissions of CO, HC, soot (smoke) and particulate matter (PM), depending on the water injection timing and degree of incomplete combustion.  相似文献   

8.
This study discusses the performance and combustion characteristics of a direct injection (DI) diesel engine fueled with biodiesels such as waste (frying) palm oil methyl ester (WPOME) and canola oil methyl ester (COME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant engine speed mode (1500 rpm) under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME, the engine performance slightly weakened; the combustion characteristics slightly changed when compared to petroleum based diesel fuel (PBDF). The biodiesels caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.  相似文献   

9.
Tiegang Fang  Tien Mun Foong 《Fuel》2009,88(11):2154-2162
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine was used to investigate the spray and combustion processes for biodiesel blends under different injection strategies. The experimental results indicated that the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation. The ignition and heat release rate peak occurred later with increasing biodiesel content. Fuel impingement on the wall was observed for all test conditions. The liquid penetration became longer and the fuel impingement was stronger with the increase of biodiesel content. Early and late injection timings result in lower flame luminosity due to improved mixing with longer ignition delay. For all the injection timings, lower soot luminosity was seen for biodiesel blends than pure diesel fuel. Furthermore, NOx emissions were dramatically reduced for premixed combustion mode with retarded post-TDC injection strategies.  相似文献   

10.
An experimental study of the performance and emission characteristics of diesel engine using direct and indirect injection combustion systems are carried out on a same model of two diesel engines fuelled with diesel and the blend of diesel and Chinese pistache biodiesel. The results show that the NOx emissions from the indirect injection combustion system (ICS) fuelled with diesel are reduced by around two thirds, compared to that from direct injection combustion system (DCS). Smoke emissions from the engine using ICS are all significantly lower than that of DCS, reduced by 70% for diesel; by 50-60% for the blend. The brake thermal efficiencies (BTEs) reduced by 8-10%, compared to that of DCS; the fuel consumptions increased by around 7-9%. It is also found that carbon monoxide (CO) emissions are reduced when the engine run at engine high power outputs, so are the hydrocarbon (HC) emissions from ICS at the peak power outputs. It is found that, when fuelled with the blend, the effects of ICS to the performance and emissions of diesel engine are very similar to that of running with diesel. For ICS engine fuelled with diesel and the blend fuel, the BSFCs for the blend are around 5% higher; the BTEs are around 2-4% lower; the reductions of NOx from the blend fuel are 5.1-8.4% on average for the ICS; the reductions of smoke from the blend fuel are 26.8-31.7% on average for the ICS. CO emissions are around a half lower; and HC emissions are around one fifth lower, compared to that of fuelling with diesel. Comparing to that of DCS fuelled with diesel, using ICS fuelled with the blended fuel has much lower emissions. NOx emissions decreased by 65.6% and 66.1%; smoke emissions decreased by 75.7% and 80.2%; CO emissions decreased by 55.8% and 46.0%; HC emissions decreased by 24.9% and 18.9%; with the BSFCs around 14.6-14.9% higher and the BTEs around 9.7-10.0% lower.  相似文献   

11.
Tiegang Fang  Chia-fon F. Lee 《Fuel》2011,90(4):1449-1456
An optically accessible single-cylinder high speed direct-injection (HSDI) diesel engine was used to investigate the spray and combustion processes with narrow-angle wall-guided sprays. Influences of injection timings and injection pressure on combustion characteristics and emissions were studied. In-cylinder pressure was measured and used for heat release analysis. High-speed spray and combustion videos were captured. NOx emissions were measured in the exhaust pipe. With significantly retarded post-top dead center (TDC) injections, smokeless combustion was achieved for wall-guided diesel spray. Premixed-combustion was observed from the heat release rates and the combustion images. Natural luminosity was found significantly lower for smokeless combustion case. However, NOx emissions were higher for the low sooting combustion cases. In addition, retarding injection timing lead to more complete combustion with more heat released from the same amount of fuel. Spray images revealed significant fuel impingement for all the conditions and the spray development was controlled and guided by the piston bowl curvature. NOx and natural luminosity trade-off trend was observed for these conditions. However, quite different from conventional diesel combustion, retarding post-TDC injection timing leads to lower natural luminosity and higher NOx emissions for narrow-angle wall-guided spray combustion. For the smokeless combustion case under moderate operating load, both homogeneous combustion and low-luminosity pool fires were observed during combustion process and the latter was due to fuel-piston impingement. The findings in this study could be used to solve the smoke issues associated with narrow-angle injection technique under high load conditions. With narrow-angle injectors, ignition could occur for significantly retarded post-TDC injections, which provides a unique mixing approach for diesel engines.  相似文献   

12.
Engine performance and emission comparisons were made between the use of soy, Canola and yellow grease derived B100 biodiesel fuels and an ultra-low sulphur diesel fuel in the high load engine operating conditions. Compared to the diesel fuel engine-out emissions of nitrogen oxides (NOx), a high-cetane number (CN) biodiesel fuel produced comparable NOx while the biodiesel with a CN similar to the diesel fuel produced relatively higher NOx at a fixed start of injection. The soot, carbon monoxide and un-burnt hydrocarbon emissions were generally lower for the biodiesel-fuelled engine. Exhaust gas recirculation (EGR) was then extensively applied to initiate low temperature combustion (LTC) mode at medium and low load conditions. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. Simultaneous reduction of NOx and soot was achieved when the ignition delay was prolonged by more than 50% from the case with 0% EGR at low load conditions. Furthermore, a preliminary ignition delay correlation under the influence of EGR at steady-state conditions was developed. The correlation considered the fuel CN and oxygen concentrations in the intake air and fuel. The research intends to achieve simultaneous reductions of NOx and soot emissions in modern production diesel engines when biodiesel is applied.  相似文献   

13.
In this paper, the air-fuel mixing and combustion in a small-bore direct injection optical diesel engine were studied for a retarded single injection strategy. The effects of injection pressure and timing were analyzed based on in-cylinder heat release analysis, liquid fuel and vapor fuel imaging by Laser induced exciplex fluorescence technique, and combustion process visualization. NOx emissions were measured in the exhaust pipe. Results show that increasing injection pressure benefits soot reduction while increases NOx emissions. Retarding injection timing leads to simultaneous reduction of soot and NOx emissions with premixed homogeneous charge compression ignition (HCCI) like combustion modes. The vapor distribution in the cylinder is relatively homogeneous, which confirms the observation of premixed combustion in the current studies. The postulated path of these combustion modes were analyzed and discussed on the equivalence ratio-temperature map.  相似文献   

14.
Zhaolei Zheng 《Fuel》2009,88(2):354-365
An optimized reduced mechanism of n-heptane including 42 species and 58 elementary reactions adapted to charge stratification combustion is developed first in this study. Some engine experiments and a fully coupled CFD and reduced chemical kinetics model with n-heptane as fuel are adopted to investigate the combustion processes of HCCI-like charge stratification combustion aimed at diesel HCCI application. For premixed/direct-injected stratification combustion, the low temperature reaction occurs in the regions with homogeneous fuel first and high temperature reaction begins from high fuel concentration regions involved in the spray process. With the increase of the injection ratio, the high temperature reaction occurs in advance, the pressure rise rate reduces, UHC emissions decrease and CO emissions increase. At larger injection ratio, the onset of the high temperature reaction advances and the maximum pressure rise rate decreases with the retarding of injection timing. UHC and CO emissions have relation to the fuel spray penetration at different injection timings. NOx emissions increase rapidly with the increase of the stratification degree.  相似文献   

15.
The effect of the combustion mode on particle emission was analyzed both in the cylinder and at the exhaust of a direct injection (DI) Common Rail (CR) transparent research diesel engine by means of spectroscopic and conventional methods. The engine was equipped with a flexible electronic control unit (ECU) capable of operating up to 5 injections per cycle with different start of injection and dwell time allowing performing different combustion modes. The conventional diesel combustion, the homogeneous charge compression ignition (HCCI), and the low temperature combustion (LTC) modes were analyzed. In-cylinder broadband UV–visible scattering and extinction measurements were carried out to follow the particle formation and oxidation processes as well as to have information about their chemical nature and size distribution. The characterization of the particulate emission at the exhaust was performed by means of an electrical low pressure impactor (ELPI), for the counting and the sizing of the particles, and an opacimeter, for measuring the smoke opacity. The in-cylinder measurements highlighted that particles ranged from 3 to 100 nm whatever was the combustion mode. Nevertheless, particles produced by a conventional diesel combustion process principally consist of soot. Whereas particles formed during HCCI and LTC modes are composed mainly of organic compounds. The exhaust particle emissions depend on the combustion mode both in terms of size and number. A larger amount of particles smaller than 100 nm was emitted during HCCI and LTC modes with respect to the conventional one. Moreover, HCCI mode showed a strong accumulation mode.

Copyright 2012 American Association for Aerosol Research  相似文献   

16.
柴油车排气碳微粒催化燃烧研究新进展   总被引:2,自引:0,他引:2  
主要介绍了国内外柴油车排气碳微粒催化燃烧的研究现状和最新进展,重点分析了贵金属、金属氧化物、金属氧化物碱金属复合型以及过渡金属复合型催化剂在去除柴油车排气中碳微粒中的特点、存在问题以及在实际中的应用,指出未来柴油车排气后处理的发展趋势是同时去除CO、HC、NOx和微粒的四元催化剂。  相似文献   

17.
The use of biodiesel as an alternative in a diesel engine for extended period causes several engine operating problems such as injector coking, piston ring sticking, unfavorable pumping and spray characteristics due to the high viscosity of biodiesel compared to conventional diesel. In this study, a blend of 30% waste cooking palm oil (WCO) methyl ester, 60% diesel and 10% ethanol was selected based on stability test conducted and named as diestrol. The effect of diestrol fuel on the performance, emission and combustion characteristics of a direct injection diesel engine at varying injection pressure and timing was studied through experimental investigation. Maximum brake thermal efficiency of 31.3% was obtained at an injection pressure of 240 bar and injection timing of 25.5° bTDC. Compared to diesel, diestrol fuel showed reduction in carbon monoxide (CO), carbon dioxide (CO2) and smoke emission by 33%, 6.3% and 27.3% respectively. Diestrol fuel decreased nitric oxide (NO) emission by 4.3%, while slight increase in the levels of unburnt hydrocarbon (UHC) was observed. Diestrol fuel exhibited higher cylinder gas pressure and heat release rate compared to diesel. Minimum ignition delay of 12.7° CA was observed with diestrol fuel which was similar to diesel at same operating condition.  相似文献   

18.
Effects of injection angles and injection pressure on the combustion processes employing multiple injection strategies in a high-speed direct-injection (HSDI) diesel engine are presented in this work. Whole-cycle combustion and liquid spray evolution processes were visualized using a high-speed video camera. NOx emissions were measured in the exhaust pipe. Different heat release patterns are seen for two different injectors with a 70-degree tip and a 150-degree tip. No evidence of fuel-wall impingement is found for the first injection of the 150-degree tip, but for the 70-degree tip, some fuel impinges on the bowl wall and a fuel film is formed. For the second injection, a large amount of fuel deposition is observed for the 70-degree tip. Weak flame is seen for the first injection of the 150-degree tip while two sorts of flames are seen for the first injection of the 70-degree tip including an early weak flame and a late luminous film combustion flame. Ignition occurs near the spray tip in the vicinity of the bowl wall for the second injection events of the 150-degree tip, however, it is near the injector tip in the central region of the bowl for the 70-degree tip. The flame is more homogeneous for the 150-degree tip with higher injection pressure with little soot formation similar to a premixed-charge-compression-ignition (PCCI) combustion. For other cases, liquid fuel is injected into flames showing diffusion flame combustion. More soot luminosity is seen for the 70-degree tip due to significant fuel film deposition on the piston wall with fuel film combustion for both injection events. Lower NOx emissions were obtained for the narrow-angle injector due to the rich air–fuel mixture near the bowl wall during the combustion process. Increasing injection pressure leads to increased NOx emissions for both injection angles because of the relatively leaner and faster combustion process with higher in-cylinder temperature for the increased injection pressure.  相似文献   

19.
《Fuel》2006,85(14-15):2046-2056
The controlling strategies of homogeneous charge compression ignition (HCCI) fueled by dimethyl ether (DME) and methanol were investigated. The experimental work was carried out on a modified single-cylinder diesel engine, which was fitted with port injection of DME and methanol dual fuel. The results show that exhaust gas recirculation (EGR) rate and DME percentage are two important parameters to control the HCCI combustion process. The ignition timing and combustion duration can be regulated in a suitable range with high indicated thermal efficiency and low emissions by adjusting the DME percentage and EGR rate. EGR cannot extend the maximum indicate mean effective pressure (IMEP) of HCCI operation range with dual fuel, but can enlarge the DME percentage range in normal combustion. The combustion efficiency largely depends on DME percentage, and EGR can improve combustion efficiency. The results also show that HC emissions strongly depend upon DME percentage, and CO emissions have good coherence to the peak mean temperature in cylinder. In normal combustion, adopting large DME percentage and high EGR rate can attain an optimal HCCI combustion.  相似文献   

20.
Jun Li  Chang-Ming Gong  Yan Su  Hui-Li Dou  Xun-Jun Liu 《Fuel》2010,89(12):3919-3925
Optimal injection and ignition timings and the effects of injection and ignition timings on performance and emissions from a high-compression direct-injection stratified charge spark-ignition methanol engine have been investigated experimentally. The results have shown that direct-injection spark-ignition methanol engine, in which a non-uniform mixture with a stratified distribution can be formed, has optimal injection and ignition timings to obtain a good combustion and low exhaust emissions in the overall mode range. Both methanol injection timing and ignition timing have a significant effect on methanol engine performance, combustion, and exhaust emissions. At an engine speed of 1600 rpm, full load, and optimal injection and ignition timings, methanol engine can obtain shorter ignition delay, lesser cycle-by-cycle variation, the maximum in-cylinder pressure, the maximum heat release rate, and higher thermal efficiency compared to the case of non-optimized injection and ignition timings. For methanol engine, the optimization of injection timing and ignition timing can lead to an improvement of brake-specific fuel consumption of more than 10% compared to non-optimized case in the overall load range and engine speed of 1600 rpm. The best compromise between thermal efficiency and exhaust emissions is reached at optimal injection and ignition timings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号