首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Wear》1996,193(2):163-168
A material composed of a steel backing, a sintered porous bronze middle layer and a layer of reinforced PTFE, which is named JS material, was prepared. The friction, wear and limiting PV values of this material under dry friction as well as the lubrication of number 20 mechanical oil were studied using a MPV-1500 friction tester. The worn surface of JS material and the transfer film formed on the counterface of carbon steel were investigated using scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The results show that the friction, wear and limiting PV values of JS material can be greatly improved with the lubrication of oil. The results of SEM and EPMA analyses indicate that, under dry friction conditions, the solid lubricant PTFE and Pb easily transfer to the steel counterface and results in the reduction of friction and wear; while under the lubrication of oil, little transference of PTFE and Pb to the steel surface occurs and very small friction and wear are achieved. Analyses of frictional surfaces also suggest that the Pb filler gets enrichment on the rubbing surfaces, which is beneficial in increasing the adhesion of the transfer film with the steel surface.  相似文献   

2.
Abstract

The sliding dry friction behaviors and wear properties of normalized 45 steel and annealed 45 steel under different magnetic field intensities were experimentally studied using a self-made HY-100 pin–disc friction and wear tester. The influence of a magnetic field on the friction and wear of 45 steel were also investigated by analyzing the microscopic friction surface and subsurface using a 3D shape analyzer and metallographic microscope. The experimental results show that the friction coefficient of the normalized 45 steel was greater than that of the annealed 45 steel under magnetic field. In addition, the results illustrate that the external magnetic field can effectively improve the wear performance of carbon steel. The wear rate of normalized 45 steel was lower than that of annealed 45 steel. The wear performance of normalized 45 steel was more significantly improved compared to annealed 45 steel with a magnetic field. Energy spectrum analysis indicated that the effect of the magnetic field on the degree of friction and oxidative wear of the normalized 45 steel was weaker than that of the annealed 45 steel, and the ratio of oxygen to iron and the oxidation area on the friction surface of the normalized 45 steel were smaller. It is believed that as an oxidation protectant, carbon reduces the oxidation wear of 45 steel. The carbon on the normalized 45 steel surface was uniformly distributed and the protective effect of friction surface was better. Therefore, the oxidation wear and oxide shedding were reduced and the wear performance was improved.  相似文献   

3.
Y.S. Zhang  Z. Han  K. Lu 《Wear》2008,265(3-4):396-401
Unlubricated fretting tests were performed with a nanocrystalline surface layer of a 99.99 wt.% copper fabricated by means of surface mechanical attrition treatment (SMAT), in comparison with a coarse-grained (CG) copper. The measured friction and wear data show that the fretting wear resistance is markedly enhanced with the nanocrystalline surface layer relative to the CG counterpart. The friction coefficient and wear volume of the SMAT Cu are lower than that of the CG Cu. For both samples, the friction coefficients and wear volumes increase with an increasing applied load and fretting frequency. A rapid increase of the friction coefficient and wear volume under an applied load above a critical value (30 N for the SMAT Cu and 20 N for the CG Cu) is noticed, corresponding to the formation of a continuous oxide layer between two contact surfaces. Also two sharp increases of the friction coefficient and wear volume at fretting frequencies of 50 Hz and 175 Hz were observed for the SMAT and the CG Cu. The former is correlated with the formation of a continuous oxide layer, while the latter corresponds to wearing away of the oxide layer.  相似文献   

4.
The characteristics of the worn surface of a pin were studied in the presence of a DC magnetic field. The experiments were conducted on a pin-on-disk tribometer in the ambient atmosphere. The medium carbon steel/medium carbon steel sliding couple was adopted. Compared to the pin formed in the absence of a magnetic field, oxidation becomes visible on the worn surface of the pin during the process of friction with the action of magnetic field. Fe2O3 was detected from the worn surface of a pin in the stable wear stage. The oxidation area of the worn surface of the pin gradually extends with increasing friction time. The wear of the pin decreases with extending of the oxidation area on the worn surface of the pin. The results reveal that the oxide layer formed on a pin worn surface is one of the key antiwear factors in the presence of a magnetic field.  相似文献   

5.
《Wear》2006,260(9-10):942-948
Surface mechanical attrition treatment (SMAT) was employed to fabricate a nanocrystalline surface layer on a pure copper plate. The grain size is about 10 nm in the top layer and increases with an increasing depth from the treated surface. The tribological behavior of the nanocrystalline surface layer was investigated under dry conditions. Experimental results show that the load-bearing ability is markedly enhanced with the nanocrystalline surface layer relative to the coarse-grained form. The friction coefficient of the nanocrystalline layer is lower than that of the coarse-grained copper when the applied load is below 20 N. With increase of the load, the difference in wear resistance between the SMAT and the conventional Cu decreases. When the load exceeds 40 N, for the SMAT Cu, there occurs a transition of wear regime from local damage to delamination of a mechanical mixed layer. There is an abrupt increase of the wear volume, which corresponds to the wearing away of the nanocrystalline layer. The enhanced wear properties of the nanocrystalline surface layer are correlated with the stability of the mechanical mixed layer and the high hardness of the nanocrystalline structure.  相似文献   

6.
为了探究轴承钢在高温润滑条件下的摩擦磨损性能,采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、洛氏硬度计等对GCr15高碳轴承钢和G20CrNi2Mo渗碳轴承钢组织、物相及硬度进行了表征,利用QG-700型气氛高温摩擦磨损试验机研究轴承钢材料不同条件下的高温润滑摩擦磨损性能,并分析其磨损机制.结果表明:2种轴承钢...  相似文献   

7.
为优选海水淡化高压泵关键零部件耐磨性能材料,以Al_2O_3陶瓷与TC4钛合金、316不锈钢、2205双相不锈钢组成的配对摩擦副作为研究对象,利用立式万能摩擦磨损试验机开展干摩擦、纯水及海水3种环境介质下配对材料的摩擦磨损试验,定量得到各摩擦副摩擦因数、磨损量,并对摩擦试样的表面形貌进行分析;采用正交试验法分析载荷、转速、环境介质对摩擦因数和磨损量的影响规律。结果表明:在相同的条件下,TC4钛合金与陶瓷配副摩擦因数较小,2205双相不锈钢与陶瓷配副磨损量较小;环境介质对摩擦因数影响较大,载荷对磨损量的影响较大;海水环境下2205双相不锈钢和316不锈钢磨痕较浅,磨损机制为疲劳磨损、磨粒磨损和腐蚀磨损的交互作用。  相似文献   

8.
传统油或脂润滑剂在极端工况环境下无法满足碳钢类零件的减摩要求,采用干膜润滑剂是提高极端工况环境下碳钢表面摩擦磨损性能的可行性方法。采用超声波分散方法制备以石墨粉末为基体的干膜润滑剂,使用压力喷涂技术使其沉积在碳钢试件表面,在端面摩擦试验仪中开展干摩擦和石墨干膜润滑剂润滑下摩擦磨损性能对比性试验研究。试验结果表明:石墨干膜润滑剂在碳钢表面的沉积效果较好,沉积的石墨干膜润滑剂具有较好的润滑性能,可以有效地保护碳钢表面不被过度磨损;喷涂石墨干膜润滑剂的碳钢试件的工作寿命随着压力载荷和主轴转速的增大而缩短,负载和滑动速度的联合作用会加速涂层向稳定方向的过渡;磨损过程中形成的微观润滑剂颗粒会形成颗粒流润滑,适当添加石墨颗粒粉末可能会延长润滑剂正常发挥减摩作用的时间。制备的石墨干膜润滑剂为碳钢在极端工况环境下的减摩提供了支持。  相似文献   

9.
利用往复滚动试验装置,研究了水介质作用下车轮钢的往复滚动摩擦磨损机制.结果表明:接触界面存在水介质条件下的车轮钢摩擦因数明显低于干态工况下的摩擦因数;水介质润滑条件下车轮钢磨损以磨粒磨损为主,水介质的存在减小了车轮钢表面的磨损,同时减轻了车轮钢表面的剥离损伤.  相似文献   

10.
In this study, an effort was made to control the friction and wear behavior of silicon carbide (SiC) and silicon nitride (Si3N4) ceramics using an ultrasonic nanocrystalline surface modification (UNSM) technique. The friction and wear behavior of the ceramic specimens was investigated using a ball-on-disk tribotester under dry conditions against two different Si3N4 and bearing steel (SUJ2) balls. The experimental test results revealed the possibility of controlling the friction and wear behavior of ceramics, where the friction coefficient and wear resistance of the specimens were improved by the UNSM technique. The hardness of the specimens also increased after UNSM treatment, but it decreased abruptly with increasing depth from the very top surface. Microscratch tests showed that the critical load of the specimens was improved by the UNSM technique. In addition, Raman spectra results revealed that no additional phase was detected after UNSM treatment, but the intensity decreased after UNSM treatment. Hence, the UNSM technique ensures stronger ceramics and enables better friction and wear behavior than available conventional sintered ceramics.  相似文献   

11.
The effect of water vapor on the friction and wear between copper and 440C stainless steel was studied using a ball-on-flat tribometer, polarization-modulation reflection?Cabsorption infrared spectroscopy, and Auger electron spectroscopy. The wear behavior changed drastically as the relative humidity (RH) varied in inert gas (nitrogen or argon). In a dry environment, a small degree of abrasive wear of soft copper was observed. In the RH range of 10?C70?%, catastrophic adhesive wear of the soft copper surface was dominant. A high RH (>80?%) environment exhibited wear of the hard 440C stainless steel surface and the steel wear debris was deposited onto the copper. The adsorption isotherm measurements for copper and stainless steel revealed that water adsorption increases quickly between zero and 10?% RH and then the adsorption proceeds more slowly as RH increases further. The adsorbed water layer thickness increases rapidly again as saturation is approached. It seems that the thin layer of adsorbed water under 70?% RH facilitates the adhesive wear through passivation of grain boundaries or acceleration of crack propagations, but the thick water layer formed over 80?% RH acts as an electrolyte medium allowing galvanic corrosion to commence.  相似文献   

12.
Lubricated fretting tests in mineral oil were performed with a nanocrystalline surface layer on a pure bulk Cu prepared by surface mechanical attrition treatment (SMAT) against a WC-Co ball. It was found that the nanocrystalline surface layer exhibited a markedly enhanced fretting wear resistance and higher friction coefficient relative to the coarse-grained (CG) form. The wear volume of the SMAT Cu is one order of magnitude lower than that of the CG Cu. The friction coefficient of the SMAT Cu increases with an increasing load and frequency, while for the CG Cu, the friction coefficient increases with an increasing fretting frequency up to 100 Hz and thereafter decreases. The higher hardness of the SMAT Cu is suggested to be the main factor causing its improved wear resistance and higher friction coefficient. A discontinuous metal transfer layer can be found on the WC-Co ball only after fretting against the SMAT Cu, which may partly account for the higher wear resistance of the SMAT Cu in comparison with the CG Cu.  相似文献   

13.
Three kinds of metal-plastic multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene (PTFE) filled by Pb or Cu2O powders, were prepared. The friction and wear properties as well as the limiting pressure times velocity (PV) values of these metal-plastic multilayer composites sliding against 45 carbon steel under both dry and oil lubricated conditions were evaluated on a MPV-1500 friction tester with a steel axis rotating on a journal bearing. The worn surfaces of these metal-plastic multilayer composites and the transfer films formed on the surface of steel axis were examined by electron probe microscopy analysis (EPMA). Experimental results show that filling of Pb to PTFE reduces the friction coefficient and wear of the composite, while filling of Cu2O to PTFE increases the friction coefficient but decreases the wear of the composite. The friction and wear properties as well as the limiting PV values of these metal-plastic multilayer composites can be greatly improved with the oil lubrication. EPMA investigations show that Pb and Cu2O fillers preferentially transfer onto the surfaces of steel axis, which may enhance or deteriorate the adhesion between transfer films and steel surfaces. Meanwhile the transfer of these metal-plastic multilayer composites onto the steel surface can be greatly reduced with oil lubrication, which results in the remarkable decrease of the wear of these metal-plastic multilayer composites.  相似文献   

14.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

15.
激光熔覆合金表面耐磨性试验研究   总被引:2,自引:0,他引:2  
使用CO2激光器对45#钢表面进行Co基和Ni基合金熔覆处理。利用销盘式摩擦试验机对激光熔覆表面进行摩擦磨损试验,研究干摩擦和润滑条件下磨损机理。Ni合金熔覆层比Co基耐磨性要好。润滑条件下,两种合金的耐磨性比干摩擦都得到很大提高。  相似文献   

16.
Jos Rendn  Mikael Olsson 《Wear》2009,267(11):2055-2061
The aim of the present study is to evaluate the abrasive wear resistance of some potential abrasion resistant steels exposed to different types of abrasive wear contact conditions typical of mining and transportation applications. The steels investigated, include a ferritic stainless steel, a medium alloyed ferritic carbon steel and a medium alloyed martensitic carbon steel.The abrasive wear resistance of the steels was evaluated using two different laboratory test methods, i.e. pin-on-disc testing and paddle wear testing that expose the materials to sliding abrasion and impact abrasion, respectively. All tests were performed under dry conditions in air at room temperature. In order to evaluate the tribological response of the different steels post-test characterization of the worn surfaces were performed using optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. Besides, characterization of the wear induced sub-surface microstructure was performed using optical microscopy.The results show that depending on the abrasive conditions a combination of high hardness and toughness (fracture strain) is of importance in order to obtain a high wear resistance. In the pin-on-disc test (i.e. in sliding abrasion) these properties seem to be controlled by the as-rolled microstructure of the steels although a thin triboinduced sub-surface layer (5–10 μm in thickness) may influence the results. In contrast, in the paddle wear test (i.e. in impact abrasion), resulting in higher forces acting perpendicular to the surface by impacting stones, these properties are definitely controlled by the properties of the active sub-surface layer which also contains small imbedded stone fragments.  相似文献   

17.
Thick composite coatings of carbides on a metal matrix are ideal for use in components that are subjected to severe abrasive wear. It is a metal matrix composite (MMC) that is reinforced by an appropriate ceramic phase, a solid lubricant coating to reduce friction and to protect the opposing surface. This study tested the wear behavior of a carbon steel surface after cladding by a gas tungsten arc welding (GTAW) method to enhance wear resistance. The microstructures, chemical compositions, and wear characteristics of the cladded surfaces were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The coating was uniform, continuous, and almost defect-free, and particles were evenly distributed throughout the cladding layer. The results of wear tests indicate that the friction coefficient of the TiC coating is lower than that of AISI 1020 carbon steel. Thus, the wear depth of the TiC coating is only one tenth of that exhibited by the AISI 1020 carbon steel. The experiments confirm that the cladding surfaces of TiC particles reduce the wear rate and friction.  相似文献   

18.
The effects of normal load, sliding speed, and surface roughness on the friction and wear of high-purity niobium (Nb) during sliding without and with an introduction of water were systematically investigated. Increasing the normal load or sliding speed decreased the friction of the Nb under the both dry and wet conditions because the increased wear of the Nb decreased the interfacial shear strength between the steel ball and Nb by promoting the surface roughening and the production of wear debris. However, the Nb tested at the lowest sliding speed under the lowest normal load with water exhibited the lowest friction and wear due to the formation of oxide layer on the wear track. The friction and wear of the Nb tested under the dry condition decreased with increased surface roughness because the higher interfacial shear strength between the steel ball and smoother Nb resulted in the earlier breakdown of the native oxide layer and direct contact between the steel ball and Nb. However, increasing the surface roughness of the Nb increased its friction and wear under wet conditions, probably due to the easier breakdown of the oxide layer that formed on the rougher surface during sliding. The tribological results clearly showed that the introduction of water during sliding had a significant influence on the tribological properties of the Nb.  相似文献   

19.
The niobized layer was formed on Q235 low-carbon steel by double-glow plasma surface niobizing to improve its wear resistance. The microstructure, phase composition, and microhardness were determined. The friction and wear properties of the niobized samples and the untreated alloys were tested on a ball-on-disk tribometer by rubbing against GCr15 and silicon nitride (Si3N4) balls at room temperature and 400°C, respectively. The results indicated that the alloyed layer that contained a sediment layer and diffusion layer is about 35 μm in thickness, metallurgically adhered to the base metal. Niobium content was gradually decreased along the depth direction from the surface, which was similar to the change in the microhardness. The alloying layer mainly consisted of Nb, Fe2Nb, and FeNb phases. Under unlubricated sliding conditions, the friction coefficients and the specific wear rates were lower than those of the untreated carbon steel at room and high temperatures. The wear mechanism of the niobized specimen at room temperature is dominated by slightly abrasive wear, whereas the predominant wear mechanism is abrasive wear and fatigue delamination at high temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号