首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
聚苯胺/碳纳米管的原位复合   总被引:3,自引:2,他引:3       下载免费PDF全文
通过原位溶液聚合制备了聚苯胺/碳纳米管(PANI/CNT)复合材料。采用透射电子显微镜(TEM)、紫外-可见光光谱(UV-VIS)、傅立叶变换红外光谱(FTIR)、热失重分析(TGA)及差示扫描量热法(DSC)研究了PANI/CNT复合材料的结构与性能。研究表明,苯胺(ANI)的聚合倾向于在碳纳米管(CNT)表面进行,形成PANI包覆的CNT。CNT表面PANI层的厚度随溶液中ANI含量的增加而增加;当溶液中ANI含量较低时,CNT表面PANI层厚度均匀;当ANI含量过高时,CNT表面PANI层厚度不均匀,形成一些颗粒状附着物。PANI与CNT之间主要是物理吸附;PANI/CNT复合材料的电导率远高于PANI本身。同时,PANI/CNT复合材料的耐热性远高于PANI,并受PANI含量影响。  相似文献   

2.
张诗洋  朋小康  廖松义  闵永刚 《材料导报》2021,35(18):18030-18034
近年来,氧化石墨烯(GO)由于其独特的物理化学性质在水处理领域受到了广泛的关注.然而,单纯的GO层层自组装膜对二价阳离子的过滤效率较低,在实际应用中受到了限制.本工作通过在GO膜上接枝聚苯胺(PANI)制备了PANI/GO复合膜,并对GO膜和PANI/GO复合膜的性能进行了研究和比较.结果表明,复合膜具有较高的渗透通量和截留率,GO的负载量对复合膜的过滤性能具有重要作用,当GO负载量为150 mg·m-2时,复合膜的渗透通量为214.5 L·m-2·h-1·MPa-1;在重金属离子去除方面,复合膜对CuCl2、ZnCl2、BaCl2、CdCl2、NiCl2的截留率均超过90%,分离效果良好,其对离子的排斥依赖于唐南效应和尺寸排斥.因此,PANI/GO复合膜在废水处理领域具有良好的应用前景.  相似文献   

3.
研究采用一步电化学剥离和电沉积法,在含Na2SO4、HCl与苯胺(An)单体的混合溶液中,以柔性石墨纸为原料,利用电场条件下电解液离子定向迁移和苯胺单体的电聚合制备聚苯胺纳米线/自支撑石墨烯(PANI/SGr)复合材料。更具活性的新生SGr与PANI结合,显著提高了PANI/SGr复合材料的稳定性。PANI呈纳米线状均匀分布在SGr上,形成的三维网络结构所呈现出的孔隙促进了电解液离子扩散到复合材料的内部结构中。将PANI/SGr复合材料作为超级电容器电极材料进行电化学测试,2 mV·s?1的扫速下获得的比电容为453 F·g?1。在0.5~10 A·g?1的电流密度范围内,PANI/SGr复合材料倍率性能达73.1%。在1 A·g?1的电流密度下PANI/SGr复合材料经10000次充放电之后的循环稳定性仍高达87.3%。这表明PANI/SGr复合材料具有良好的电容性能和优异的循环稳定性,有望作为超级电容器电极材料。   相似文献   

4.
通过水热法成功制备复合材料SnO_2/CNT,将其首次用作染料敏化太阳能电池(DSSC)的对电极,加速I3-到I-的还原。通过X射线衍射(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析,证明SnO_2纳米颗粒附着在CNT表面,形成了均匀的多孔网络结构。循环伏安测试(CV)测试表明,SnO_2/CNT复合对电极的活性表面积最大,比SnO_2、CNT和Pt电极有更高的阴极电流密度。同时,SnO_2/CNT对电极对I3-还原有较小的电荷传输电阻(6.13Ω·cm2)。最后,由SnO_2/CNT对电极组装的DSSC的能量转换效率(4.44%)与Pt电极组装的DSSC的效率(5.27%)相当。  相似文献   

5.
将酸化的碳纳米管(CNT)粉末、硝酸镁置于异丙醇溶剂中超声处理,制备成分散均匀的CNT电泳液.采用不同CNT浓度的电泳液在CrCuCr电极上电泳沉积CNT薄膜,并对阴极样品进行场发射性能测试;同时采用紫外-可见光谱仪对CNT电泳液进行光谱分析.结果表明,CNT浓度为0~0.13 g/L的电泳液在258 nm处存在光谱吸收,且其吸光度与相应CNT浓度呈良好的线性关系;当CNT浓度为0.12 g/L时电泳沉积制备的CNT阴极场发射性能较好,其开启电场为0.903 V/μm,当电场强度为1.395 V/μm时场发射电流密度为2.903 mA/cm2.利用紫外-可见光谱可以有效地分析电泳液中CNT浓度,为电泳沉积良好质量的CNT薄膜提供了保证.  相似文献   

6.
通过电化学沉积法制备得到聚苯胺/炭微球(PANI/CMS)复合电极材料,通过场发射扫描电子显微镜和红外光谱对PANI/CMS复合材料进行形貌和结构表征。并采用循环伏安、恒电流充放电、电化学阻抗谱及循环寿命测试等技术考察其电化学行为。结果表明:PANI均匀包覆于CMSs表面;在电流密度为1 A·g~(-1)时,复合材料的比电容达到206 F·g~(-1);PANI/CM S复合材料表现出优异的电化学稳定性。说明PANI/CMS复合材料有望作为电极材料用于超级电容器。  相似文献   

7.
通过涂覆热分解法并结合电化学聚合法制备得到聚苯胺(PANI)/RuO2电极材料。使用涂覆热分解法于260℃热处理3 h制备RuO2薄膜, 通过电化学聚合法将PANI粒子沉积在RuO2薄膜上, 并在80℃加热12 h。采用XRD分析PANI/RuO2复合物晶相, 采用SEM观察PANI/RuO2复合电极材料的形貌变化。利用循环伏安及恒流充放电测试了该复合电极的电化学性能。结果表明, PANI沉积时间为25 min, 该PANI/RuO2复合电极的最大电容量为9.72 F, 比电容为452 F·g-1, 充放电曲线体现了较低的电压降、等效串联电阻及良好的充放电性能。经1000次循环伏安后, 其比电容损失约为11%。  相似文献   

8.
衬底电极对丝网印刷CNT阴极场发射性能的影响   总被引:1,自引:0,他引:1  
通过丝网印刷技术,将碳纳米管(carbon nanotube,CNT)浆料直接转移到CrCuCr薄膜衬底电极、掺Sn的In_2O_3(indium tin oxides,ITO)透明导电薄膜衬底电极和Ag浆导电厚膜衬底电极上,高温烧结后得到CNT阴极,并对CNT阴极进行表面形貌和场发射性能的研究.结果表明,不同衬底电极对CNT阴极场发射性能的影响不一样,CrCuCr薄膜衬底电极CNT阴极、ITO透明导电薄膜衬底电极CNT阴极及Ag浆厚膜导电衬底电极CNT阴极场发射的开启电场分别为0.99、2.05和2.46V/μm;当电场为3.0V/μm时,它们的亮度分别为2472、1889、587cd/m~2.CrCuCr薄膜衬底电极CNT阴极的场发射性能最优,ITO透明导电薄膜衬底电极CNT阴极次之,Ag浆厚膜导电衬底电极CNT阴极最差,并根据金属-半导体理论模型分析了原因.  相似文献   

9.
基体诱导法制备碳纳米管/云母复合导电粉   总被引:1,自引:0,他引:1  
基体诱导法制备碳纳米管(CNT)/云母复合导电粉, 即用聚乙烯醇(PVA)或聚丙烯酰胺(PAM)对云母进行处理, 将处理后的云母与CNT分散液混合, 使CNT吸附在云母表面. 测试复合导电粉的体积电阻率(ρ)发现, CNT含量为1.0wt%时, CNT/云母的ρ为2.0×104Ω·cm, 而用PVA修饰的云母制备CNT/云母, 体积电阻率达到86.6Ω·cm. 运用XPS、SEM对复合导电粉进行表征. 结果表明当云母表面经PVA修饰后, 能改善CNT在其表面的吸附和分散, 使CNT/云母的体积电阻率明显降低.  相似文献   

10.
采用两步法进行纳米铂在碳纳米管表面的原位担载。首先利用柠檬酸(CA)对苯胺(ANI)自组装作用,制备PANI/CNT复合载体;进而比较了柠檬酸络合及未络合氯铂酸前驱体两种方式,通过原位还原铂,制备纳米铂-聚苯胺-碳纳米管(Pt-PANI/CNT)复合材料。结果表明,CA在初期利于PANI完整包覆CNT,且CA络合氯铂酸方式在后期利于纳米铂均匀可控担载,从而所得Pt-PANI/CNT材料表现出高电化学活性面积、甲醇的稳定电催化活性。对拓展复合纳米结构及性能提出了可行路线,利于未来探索。  相似文献   

11.
以无机材料Fe3O4为模板,将在碳纳米管(CNT)功能化后,包裹在模板表面,然后再将苯胺单体接枝在CNT表面,之后采用化学氧化法,将接枝于CNT表面的苯胺单体聚合成聚苯胺(PANI),从而制备CNT/PANI空心球复合材料。用傅立叶变换红外光谱、扫描电子显微镜对复合材料进行成分和形貌的表征。用循环伏安法、恒流充放电和循环寿命等电化学测试手段来表征复合材料的电化学性能。研究结果表明所制备的复合材料比容量可达到185F/g(有机电解液),高于同样条件下所制备的纯PANI和采用一般方法所制备的CNT/PANI复合材料的电化学容量(65F/g,152F/g),显示出良好的应用前景。  相似文献   

12.
在聚苯胺(PANI)和聚吡咯(PPy)的相应单体溶液中,采用循环伏安法(CV)在不锈钢基体(SS)上分层聚合制备了具有聚苯胺/聚吡咯复合薄膜(PANI/PPy/SS)的电极材料。用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)对其结构进行了表征。在0.5mol/L H2SO4中,对PANI/PPy/SS电极材料进行了循环伏安法、恒流充放电、交流阻抗谱(EIS)等电化学性能测试,并用塔菲尔曲线(Tafel)研究了其耐腐蚀性能。结果表明,当电流密度为5mA/cm2时,PANI/PPy/SS电极材料比电容达747.5F/g,且复合膜的腐蚀电位相对于单纯的PANI、PPy薄膜分别正移了0.064V、0.117V,表现出较好的耐腐蚀性,是一种应用前景很好的超级电容器材料。  相似文献   

13.
为了提高石墨烯/聚酰亚胺(rGO/PI)复合纱线电极的电化学性能,采用电化学聚合法在rGO/PI复合纱线表面沉积聚苯胺(PANI)颗粒,研究了沉积时间对PANI-rGO/PI复合导电纱的形貌及增重的影响。结果表明, PANI在rGO/PI复合纱线表面均匀沉积,且沉积量随着沉积时间的增加而增大。采用循环伏安法(CV)、恒流充放电法(GCD)研究了PANI-rGO/PI复合导电纱线的电化学行为。结果表明, PANI沉积时间对纱线电极的循环伏安特性、恒流充放电曲线等有很大的影响,当PANI沉积时间为900 s时,所得PANI-rGO/PI复合纱线电极的循环伏安特性和恒流充放电性能表现均最优,比电容为81.22 F·cm^-3,而rGO/PI纱线电极仅为16.4 F·cm^-3。以最优工艺制得的PANI-rGO/PI复合导电纱作为电极组装了纤维状超级电容器,采用交流阻抗谱法(EIS)、 CV及GCD对器件进行电化学性能表征。结果表明,该器件体积比电容可达41.73 F·cm^-3,在充放电3 000次后比电容依然能够维持在85%左右,所得纤维状超级电容器经过串联可成功驱动LED灯。  相似文献   

14.
为探究负载量对钛基Ir Si Ce电极电催化性能的影响,采用热分解法在450℃制备了不同负载量的钛基Ir Si Ce电极。采用扫描电子显微镜表征了涂层表观形貌,采用开路电位、循环伏安曲线、析氧极化曲线及交流阻抗谱分析了其电化学性能。结果表明:合理的负载量可以增大电极的活性表面积、增加致密度,提高电极电催化活性、稳定性及使用寿命,但负载量过多或过少均会对电极性能产生不利影响;随着负载量增加,稳态开路电位持续增加,有利于表面转化反应的发生;真实的电催化效应和表观活性并不一致,当负载量为7.5 g/cm2时,表观活性达到最高,但真实的电催化效应在10.0 g/cm2时达到最高。  相似文献   

15.
对氧化铈(CeO_2)进行3-氨丙基三甲氧基硅烷(APTMS)修饰得到改性氧化铈(CeO_2-APTMS),并与苯胺(An)发生接枝聚合,制备出CeO_2-APTMS为载体,负载聚苯胺(PANI)的复合材料PANI/CeO_2-APTMS。采用红外光谱、X射线衍射、热重分析及旋转圆盘电化学测试技术,将PANI/CeO_2-APTMS复合材料同未经改性PANI/CeO_2复合材料、纯PANI电化学性能进行比较。结果表明,PANI/CeO_2-APTMS中PANI接枝效果最好,而且CeO_2-APTMS表面接枝PANI与纯PANI结构相同;经过APTMS修饰CeO_2与PANI之间通过价键接枝成PANI/CeO_2-APTMS的起始分解温度在242℃左右,且在200~600℃内的分解速率最慢,PANI/CeO_2-APTMS表现出很好的热稳定性;PANI/CeO_2-APTMS复合材料修饰电极在65g/L Zn~(2+),150 g/L H_2SO_4的硫酸锌体系中,通过循环伏安测试其具有良好峰对称性以及最高阳极峰电流,极化曲线测试对比3类修饰电极时发现在不同转速下PANI/CeO_2-APTMS/GC修饰电极的析氧电位值均偏低,体现出良好的稳定性及析氧电催化活性。  相似文献   

16.
采用两步法成功制备Sb-SnO2/钛酸钾/聚苯胺(SST/PANI)多元复合材料。首先制备包覆均匀的Sb-SnO2/钛酸钾(SST)复合物,然后以该复合物为载体,通过其表面苯胺(An)单体的化学氧化聚合获得目标产物。利用X射线衍射(XRD)、透射电子显微镜(TEM)、热分析(TG-DTA)、Fourier红外光谱和交流阻抗测试对复合材料进行表征。结果表明:聚苯胺与SST之间主要为物理结合;当苯胺的包覆率为25%时,SST/PANI复合材料的体积电阻率可达1.8Ω·cm,且聚苯胺的包覆均匀性尚好。  相似文献   

17.
脉冲电流法制备聚苯胺/纳米银复合膜   总被引:1,自引:0,他引:1  
以高导电率的Ag作为添加材料 ,首次采用换向脉冲电流法使PANI和Ag发生共沉积 ,制成PANI/Ag复合电极。并用循环伏安研究了复合电极在硝酸溶液中的电化学性能及沉积过程中电化学参数对膜层电化学性能的影响。当Ag 浓度为 0 0 1mol/L ,苯胺浓度为 0 3mol/L ,沉积平均电流密度为 3~ 4mA/cm2 ,且脉冲阳极峰电流和阴极峰电流比值适当时可获得电化学性能最为优异的膜层。  相似文献   

18.
采用恒电流法、脉冲电流法、循环伏安法及自聚合法4种聚合方法将聚苯胺(PANI)沉积在改性石墨(MGE)上,制备了PANI/MGE复合电极。利用扫描电镜和红外光谱对PANI/MGE的微观形貌和分子结构进行表征;利用循环伏安法、恒电流充放电及电化学阻抗谱测试研究PANI/MGE的电化学性能。结果表明:脉冲电流法聚合所得PANI/MGE具有最高的单位面积电容量和良好的倍率特性,放电电流为10mA/cm2时,比电容可达3.35F/cm~2;在-0.2~0.8V区间内具有良好的电容性能,且经1000次扫描后,循环电容保持率为82.64%,可以用作赝电容器的电极材料。  相似文献   

19.
以过氧化氢(H2O2)为氧化剂,采用乳液聚合法,添加不同表面活性剂,在室温下制备得到聚苯胺(PANI)电极材料。采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)及X-射线衍射(XRD)方法对其进行结构、形貌表征。用掺杂的PANI为活性物质制作电极,以lmol·L-1 H2SO4为电解液,组装成超级电容器。用恒电流充放电技术测试了其电化学性能。结果表明,添加表面活性剂十二烷基苯磺酸钠(SDBS)制备的PANI材料在电流密度为1mA·cm-2下的单电极比容量达497F·g-1,比掺杂十二烷基磺酸钠(SDS)的PANI材料具有更高的比容量。  相似文献   

20.
在CoSO4-C6H7N-H2SO4混合液中,采用恒电位法合成了CoO/聚苯胺(PANI)复合膜,研究了添加剂(H4N)2S对CoO/PANI复合膜的影响。通过电化学测试技术、SEM、XRD和加速腐蚀试验等方法对CoO/PANI复合膜的微观形貌及耐腐蚀性能进行分析。结果表明,合成的CoO/PANI复合膜中,CoO以晶体形式存在,(H4N)2S的加入改变了CoO/PANI复合膜膜层的微观形貌,由不致密不规则的片状结构转变为均匀致密规则的片状一体结构,(H4N)2S加入量过大导致(H4N)2S-CoO/PANI复合膜表面出现少量孔洞;未添加(H4N)2S的CoO/PANI复合膜自腐蚀电流密度为7.079×10-6 A/cm2,自腐蚀电位为-0.545 V,添加0.3 g/L的(H4N)2S后,(H4N)2S-CoO/PANI复合膜自腐蚀电流密度达到7.943×10-7 A/cm2,自腐蚀电位达到-0.314 V,极化电阻为6 426.8 Ωcm2,经过10% HCl点滴腐蚀时间达478 s,中性盐雾实验56 h未见锈蚀,(H4N)2S显著提高了CoO/PANI复合膜的耐腐蚀性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号