首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Wet chemical cleaning of silicon is a critical step, e.g., pre-gate clean, in the semiconductor manufacturing[1]. For example, pre-gate oxide cleaning demands ultra-clean silicon surface with least surface roughness. It is well known that metallic infinities and roughness cause the lower breakdown voltage in gate dielectric[2]. It has stringent requirements for ultra-clean and atomically flat silicon surface as the thickness of gate oxide is decreasing. In the present work, we have extended our study on Si(100) surface13] and extensively investigated wet chemical cleaning of Si(111) and Si(100) surfaces in NH4F-based solutions by using scanning tunneling microscopy (STM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and total reflection X-ray fluorescence spectrometry (TXRF). Surface roughness, organic contamination, metallic impurities and surface termination on the silicon surfaces after wet chemical cleaning with various NH4F-based solutions have been determined and compared with those treated with RCA cleans, HF solutions and other industrially used solutions. Our results indicate that ultra-clean and smooth Si(111) and Si(001) surfaces are obtained by treatment with NH4F-based solutions.  相似文献   

2.
    
Summary It has been observed by high resolution surface sensitive core level photoelectron spectroscopy that ultrathin silicon oxides thermally grown in situ show four oxidation states. These are not homogeneously distributed across the interface. For an interface thickness of less than 0.7 nm, corresponding to less than three oxide layers, the dominant emission at = 130 eV is from the Si4+ component of the chemically shifted Si 2p levels. Since the escape depth is here only about 0.4 nm, it is concluded that the transition from crystalline Si to amorphous SiO2 occurs within 0.5 nm.  相似文献   

3.
We use precision ellipsometry to evaluate the existence of nanometer thick vapor films at the surface between a liquid and a hydrophobic alkylsilane coated Si wafer. We find no evidence for such vapor films. All of our fluid-solid ellipsometry measurements can be explained using a double layer model consisting of an oxide plus silane layer between the fluid and bulk Si substrate. We have carefully checked our ellipsometer for residual phase shifts which might, under certain circumstances, cause a mis-interpretation of the experimental results. We find that the most reliable ellipsometric results for thin films (which are relatively immune to the presence of small residual phase shifts) are collected at the Brewster angle. The dielectric constant of the native oxide coating is also compared with similar measurements for two thick (approximately 100-300 nm) thermally grown oxide coatings on a Si wafer.  相似文献   

4.
UV/ozone supported surface oxidation of wet chemically cleaned and sulfurized InP(001) was investigated using XPS in order to study the chemical stability of (NH4)2S-passivated surfaces. Sulfur coverages of about one monolayer thickness were not sufficient to completely passivate the InP surface against oxidation. Similar oxides of the substrate components were observed at the surfaces. Evidence for surface passivation was found in the chemical stability of incorporated sulfur (In-S bonds), the lower growth rate of the oxide layer and its reduced thickness at comparably large UV/ozone exposures. The oxide layer was found to be amorphous at all stages of the oxidation process, as was proved by X-ray photoelectron diffraction.  相似文献   

5.
Summary Oxidized surfaces show smeared out XPS lines which cannot be fitted by bulk compounds and by lateral growth. By simultaneously fitting XPS spectra obtained for take-off angles between 5 ° and 80 ° the resolution is enhanced. Thus small amounts (<0.5 nm) of interface oxides are identified in level shift, stoichiometry and spatial distribution, i.e., serration and protrusion of interfaces are revealed. The ARXPS-analysis of oxidized (<100 °C) NbN, NbC and Nb shows that the metal surface is serrated by metallic ( 1 nm) and dielectric ( 1 nm) interface oxides, where Nb2O5 forms the outermost layer. The serration is deeper for Nb than for NbN, because Nb is weaker and dissolves more O. In contrast, in high temperature oxidation (900 °C) of a clean Si single crystal (100) surface, less interface oxides (<1 nm) have been found which grow laterally.
Über die Identifizierung von Interface-Oxiden und der Interface-Verzahnung durch ARXPS
  相似文献   

6.
Wet chemical cleaning of silicon is a critical step in the semiconductor manufacturing. Particles, contaminants, metallic impurities, roughness and native oxide on silicon surface after wet chemical cleaning deteriorate the reliability of transistor performance in integrated circuits[1]. Wet chemical etching of Si(111) and Si(100) in fluoride and alkaline solutions has been extensively studied in the past few years by using scanning tunneling microscopy (STM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)[2-11]. In the present work, we extend our study to Si(111) surface after treating with NH4F/HCl mixtures. STM, X-ray photo spectroscopy (XPS), and ATR-FTIR are used to determine surface roughness, contamination and bond information on Si(111) surface after wet chemical cleaning with various NH4F/HCl mixtures. The results are discussed in details by comparison to those treated with RCA and HF solutions, indicating that ultra-clean and flat Si(111) surface is obtained by treatment with NH4F/HCl mixture.  相似文献   

7.
Growth of aligned carbon nanotubes (CNTs) on electrically conductive substrates is promising for many applications; however, the lack of complete understanding of the substrate effects on CNT growth poses a lot of technical challenges. Here, we report the direct growth of aligned multiwalled nanotubes (MWNTs) on chemically treated stainless steel (Type 304) using a chemical vapor deposition (CVD) process. A detailed X-ray photoelectron spectroscopy (XPS) analysis has been carried out for the various treated samples in order to better understand the correlation between the surface properties of the substrates and the MWNT growth. The XPS studies revealed that the CNTs prefer to grow on the enriched surface of iron oxides obtained by the chemical treatment rather than on the passive chromium oxide films present on the surface of the as-received stainless steel substrates. The density and alignment of the MWNTs could therefore be controlled by tuning the ratio of the iron oxides to chromium oxides through the chemical treatment on the stainless steel surfaces. On the basis of this method, selective growth of CNT patterns on stainless steel has also been demonstrated.  相似文献   

8.
To enable the use of GaAs‐based devices as chemical sensors, their surfaces must be chemically modified. Reproducible adsorption of molecules in the liquid phase on the GaAs surfaces requires controlled etching procedures. Several analytical methods were applied, including Fourier transform infrared spectroscopy (FTIRS) in attenuated total reflection and multiple internal reflection mode (ATR/MIR), high‐resolution electron energy loss spectroscopy (HREELS), X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) for the analysis of GaAs (100) samples treated with different wet‐etching procedures. The assignment of the different features due to surface oxides present in the vibrational and XPS spectra was made by comparison with those of powdered oxides (Ga2O3, As2O3 and As2O5). The etching procedures here described, namely, those using low concentration HF solutions, substantially decrease the amount of arsenic oxides and aliphatic contaminants present in the GaAs (100) surfaces and completely remove gallium oxides. The mean thickness of the surface oxide layer drops from 1.6 nm in the raw sample to 0.1 nm after etching. However, in presence of light, water dissolution of arsenic oxides is enhanced, and oxidized species of gallium cover the surface. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Water-atomized iron and steel powder is commonly used as the base material for powder metallurgy (PM) of ferrous components. The powder surface chemistry is characterized by a thin surface oxide layer and more thermodynamically stable oxide particulates whose extent, distribution, and composition change during the sintering cycle due to a complex set of oxidation–reduction reactions. In this study, the surface chemistry of iron and steel powder was investigated by combined surface and thermal analysis. The progressive reduction of oxides was studied using model sintering cycles in hydrogen atmospheres in a thermogravimetric (TG) setup, with experiments ended at intermediate steps (500–1300°C) of the heating stage. The surface chemistry of the samples was then investigated by means of X-ray photoelectron spectroscopy (XPS) to reveal changes that occurred during heating. The results show that reduction of the surface oxide layer occurs at relatively lower temperature for the steel powder, attributed to an influence of chromium, which is supported by a strong increase in Cr content immediately after oxide layer reduction. The reduction of the stable oxide particulates was shifted to higher temperatures, reflecting their higher thermodynamic stability. A complementary vacuum annealing treatment at 800°C was performed in a furnace directly connected to the XPS instrument allowing for sample transfer in vacuum. The results showed that Fe oxides were completely reduced, with segregation and growth of Cr and Mn oxides on the particle surfaces. This underlines the sequential reduction of oxides during sintering that reflects the thermodynamic stability and availability of oxide-forming elements.  相似文献   

10.
High-resolution soft X-ray photoelectron spectroscopy was used to investigate the oxidation of alkylated silicon(111) surfaces under ambient conditions. Silicon(111) surfaces were functionalized through a two-step route involving radical chlorination of the H-terminated surface followed by alkylation with alkylmagnesium halide reagents. After 24 h in air, surface species representing Si(+), Si(2+), Si(3+), and Si(4+) were detected on the Cl-terminated surface, with the highest oxidation state (Si(4+)) oxide signal appearing at +3.79 eV higher in energy than the bulk Si 2p(3/2) peak. The growth of silicon oxide was accompanied by a reduction in the surface-bound Cl signal. After 48 h of exposure to air, the Cl-terminated Si(111) surface exhibited 3.63 equivalent monoleyers (ML) of silicon oxides. In contrast, after exposure to air for 48 h, CH(3)-, C(2)H(5)-, or C(6)H(5)CH(2)-terminated Si surfaces displayed <0.4 ML of surface oxide, and in most cases only displayed approximately 0.20 ML of oxide. This oxide was principally composed of Si(+) and Si(3+) species with peaks centered at +0.8 and +3.2 eV above the bulk Si 2p(3/2) peak, respectively. The silicon 2p SXPS peaks that have previously been assigned to surface Si-C bonds did not change significantly, either in binding energy or in relative intensity, during such air exposure. Use of a high miscut-angle surface (7 degrees vs < or =0.5 degrees off of the (111) surface orientation) yielded no increase in the rate of oxidation nor change in binding energy of the resultant oxide that formed on the alkylated Si surfaces. Scanning Auger microscopy indicated that the alkylated surfaces formed oxide in isolated, inhomogeneous patches on the surface.  相似文献   

11.
The synthesis and structure of a dipolar nonlinear optical bis(salicylaldiminato)Ni(II)-derivatized Schiff base complex chemisorbed on H-terminated Si(100) surfaces is reported. The existence of a monolayer of the derivatized complex chemisorbed on the Si(100) surface is unambiguously confirmed by high-resolution core-level XPS and AFM/SNOM analyses. The comparison between the optical SNOM images highlights the contribution of the monolayer to the local reflectivity of the sample. Angle-resolved XPS data indicate the presence of chlorine head atoms on the monolayer surface. Altogether, XPS and AFM/SNOM data suggest the formation of a nanoscale uniform, homogeneous, complete, ordered monolayer self-assembled on the Si(100) surface.  相似文献   

12.
Summary The adsorption of polar groups at the polymer melt/mould interface is detected by chemical analysis. Vinyl alcohol groups and vinyl acetate groups (after hydrolysis) react with heptafluoro-butanoic acid chloride to attach a fluorine-containing molecular group to the surface. By measuring fluorine and other elements with XPS the surface composition is determined. On a gold substrate vinyl alcohol groups are adsorbed in a copolymer of vinyl chloride, vinyl acetate and vinyl alcohol. If a vinyl chloride-vinyl acetate copolymer is compression moulded against gold, the polymer surface energy is increased by adsorption of vinyl acetate groups. Subsequent relaxation, after removal of the substrate, leads to slow desorption of vinyl acetate groups. At the interface of the vinyl chloride-vinyl acetate copolymer with nickel or aluminium the polymer is oxidized.
Zusammenfassung Die Adsorption von polaren Gruppen an der Polymerschmelze/Substrat — Grenzfläche wird chemisch analysiert. Vinylalkohol- und Vinylazetatgruppen in Oberflächen von Copolymeren reagieren (nach Hydrolyse) mit Heptafluorbuttersäurechlorid. Mit XPS (X-ray-Photoelectron-Spectroscopy) messen wir die Fluormenge, um die Oberflächenzusammensetzung zu bestimmen. In PVC/Ac/Alc Copolymerem adsorbieren Vinylalkoholgruppen an ein Goldsubstrat. Die Zunahme der Oberflächenenergie von PVC/Ac durch Schmelzen auf einer Goldoberfläche und die spätere Relaxation, werden verursacht durch Adsorption und Desorption von Vinylazetateinheiten. Bei Gebrauch von Nickel oder Aluminium wird die Polymeroberfläche oxydiert.


With 3 tables  相似文献   

13.
Summary The physical principles and analytical capabilities of TXRF are discussed and compared to other surface sensitive techniques. Metallic trace impurities on silicon surfaces are readily identified with detection limits down to 1011 atoms/cm2 (10–4 monolayers). Other advantages are simple sample preparation and the possibility of analyzing insulating layers without charging problems. The method has been applied to quantify coverages of Fe, Ni, Cu and Au on Si(100) surfaces, deposited from intentionally doped solutions (NH3/H2O2 and HF/NH4F). It turns out that certain metal/solution combinations cause large surface coverages on the silicon wafer, even if the metal concentration in the solution is very low (g/kg range).
Nachweis von metallischen Spurenverunreinigungen an Si(100)-Oberflächen mit der Totalreflexions-Röntgenfluorescenzanalyse (TXRF)
  相似文献   

14.
We describe a simple experimental approach for delivering self-assembled monolayers (SAMs) of octadecylphosphonic acid (OPA) on many oxide surfaces using a nonpolar medium with a dielectric constant around 4 (e.g., trichloroethylene). This approach readily results in the formation of full-coverage OPA SAMs on a wide variety of oxide surfaces including cleaved mica, Si wafer, quartz, and aluminum. Especially, the availability of delivering full-coverage OPA SAM on a Si wafer is unique, as no OPA SAMs at all could be formed on a Si wafer when using a polar OPA solution. The reason a nonpolar solvent is superior lies in the very fact that the hydrophilic OPA headgroup tends to escape from the nonpolar solution and is thus enriched at the medium-air interface. It is these OPA headgroups seeking a hydrophilic surface that make possible the well-controlled OPA monolayer on an oxide surface.  相似文献   

15.
Summary We prepared thin films of tantalum oxide on SiO2/Si substrates by thermal oxidation of tantalum. The different oxide layers and their interfaces were characterized by SIMS, AES, and XPS. Characteristic structures were obtained after different oxidation procedures. The comparative discussion of AES and SIMS depth profiles makes possible an unequivocal characterization of the reactive interfaces between the oxides of Ta and Si. The Ta2O5/SiO2 interface in particular shows non-stoichiometries which depend on the oxidation procedures and which determine the performance characteristics of pH-sensitive Ta2O5 field-effect transistors.
Tiefenprofile von Ta2O3/SiO2/Si-Strukturen: Eine kombinierte Untersuchung mit Röntgen-Photoemissions-, Auger-Elektronen- und Sekundär-Ionen-Massen-Spektrometrie
  相似文献   

16.
RCA (Radio Corporation of America) cleaning has been the important and critical step in semiconductor manufacturing for more than 30 years[1]. As the electronics devices are shrinking and gate oxide is getting thinner, stringent requirements on metallic impurities,organic contamination and surface roughness on silicon wafer after wet chemical cleaning have attracted more attention in the mechanism of wet etching processes on Si(111) and Si(100) surfaces[2=11]. In the past few years wet chemical and electrochemical etching of Si(110) in NH4F solutions has been studied by using scanning tunneling microscopy (STM)[12] and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)[13-14]. In the present work, we extend our study to Si(110) surface in NH4F/HCl mixtures by using polarized attenuated total reflection FTIR (ATR-FTIR). We have compared the ex-situ ATR-FTIR results on Si(110) in various NH4F/HCl solutions using Ge prism. Effects of potential on hydrogen-terminated structures on Si(110) surfaces have been investigated by employing in-situ electrochemical ATR-FTIR with double side polished single crystal silicon as a prism. Our ATR-FTIR spectra are correlated with the results obtained with in-situ STM.  相似文献   

17.
Summary This paper addresses three aspects of the surface analytical experiment which are felt to be particularly crucial in characterizing corrosion mechanisms: chemical speciation, microscopic analysis and improved control of experimental conditions. X-ray Photoelectron Spectroscopy (XPS or ESCA) has been particularly effective in differentiating chemical species. The major chemical use of XPS is limited however to the outer surface of the film. Depth profiling by ion bombardment frequently degrades the chemical information available in the film interior and at the metal-oxide interface, and this is often where corrosion mechanisms are established. Mechanical methods of film penetration are thus encouraged to use XPS to its maximum capability. Microscopic analysis of corrosion surfaces using Scanning Auger Microscopy (SAM) or Secondary Ion Mass Spectrometry can reveal effects such as grain boundary segregation and oxide nucleation. Another important aspect of corrosion film analysis is the preparation of the metal surface itself. The oxidized surface can be strongly influenced by preparation artefacts such as cold work or impurities. Three different studies are used to illustrate these aspects: (i) the analysis of a molybdenum inhibitor layer on a steel surface; (ii) the study of corrosion product release from 304-stainless steel; and (iii) the effects of H+ ion bombardment to anneal mechanical work on Ni-Cr alloy surfaces, prior to oxidation.
Untersuchung der Korrosion und Oxidation an Metallen mit Hilfe spektroskopischer Methoden
Zusammenfassung Diese Arbeit betont drei Gesichtspunkte oberflächenanalytischer Untersuchung, die für die Charakterisierung von Korrosionsmechanismen als besonders wesentlich erachtet werden: die chemische Bindung, die mikroskopische Analyse und die verbesserte Steuerung experimenteller Bedingungen. Die Röntgen-Photoelektronenspektroskopie (XPS oder ESCA) ist für die Unterscheidung chemischer Spezies besonders erfolgreich gewesen. Die Anwendung von XPS beschränkt sich jedoch im wesentlichen auf die äußere Oberfläche einer Schicht. Die Aufnahme von Tiefenprofilen mit Hilfe von Ionenbeschuß vermindert häufig die chemische Information, die vom Schichtinnern und vom Metall-Oxid-Interface erhältlich wäre; und hier spielen sich oft die Korrosionsvorgänge ab. Mechanische Methoden des Dünnschichtabtrags sind somit aufgefordert, XPS bis an die Leistungsgrenze zu bringen. Mikroskopische Untersuchungen von Korrosionsschichten mittels Raster-Auger-Mikroskopie (SAM) oder Sekundärionen-Massenspektrometrie können Effekte wie die Korngrenzensegregation und die Oxidbildung aufdecken. Ein weiterer bedeutender Gesichtspunkt der Analyse von Korrosionsschichten ist die Behandlung der Metalloberflächen selbst. Die oxidierte Oberfläche kann durch Behandlungsfehler wie z.B. Kaltbearbeitung oder Verunreinigung stark beeinflußt werden. An Hand von drei verschiedenen Beispielen werden diese Aspekte illustriert: (i) die Analyse einer Molybdän-Schutzschicht auf Stahl; (ii) die Untersuchung von Korrosionsprodukten auf 304-Edelstahl; und (iii) die Effekte des H+-Ionenbeschusses zum Ausheilen mechanischer Schäden auf der Oberfläche von Ni-CrLegierungen, vor der Oxidation.
  相似文献   

18.
砷化镓半导体表面自然氧化层的X射线光电子能谱分析   总被引:1,自引:0,他引:1  
任殿胜  王为  李雨辰  严如岳 《分析化学》2003,31(10):1191-1194
用X射线光电子能谱(XPS),测量了Ga3d和As3d光电子峰的结合能值,指认了砷化镓(GaAs)晶片表面的氧化物组成,计算了表面氧化层的厚度,定量分析了表面的化学组成;比较了几种不同的砷化镓晶片表面的差异。结果表明:砷化镓表面的自然氧化层主要由Ga2O3、As2O5、As2O3和单质As组成,表面镓砷比明显偏离理想的化学计量比,而且,氧化层的厚度随镓砷比的增大而增加;溶液处理后,砷化镓表面得到了改善。讨论了可能的机理。  相似文献   

19.
The tunable surface properties of Al-incorporated c-Si and/or homogeneous c-Si (i.e., absorber layer) thin films are investigated with the help of 3D surface topography, statistical analysis, and contact angle measurement. The absorber layers are developed by ion irradiation on c-Al/a-Si films, which results the crystallization of Si in bilayer films, and the top unreacted Al layers were chemically etched off by wet selective etching. The 3D surface topography and statistical analysis is performed on the atomic force microscopy images of the absorber film surface. The analyses suggest that the surfaces are highly complex and irregular isotropic. The surface roughness and irregularity is found to be decreasing with increasing ion fluence. Variation of contact angle with statistical parameters suggest that the wettability of the absorber surface strongly depends on the surface statistical parameters. The surfaces are hydrophobic in nature, and hydrophobicity is found to decrease with increasing ion fluence. The hydrophobic nature of low reflective absorber surface suggests that the film may be useful as a photon absorber layer for advance solar cell applications.  相似文献   

20.
The initial oxide state of powder is essential to the robust additive manufacturing of metal components using powder bed fusion processes. However, the variation of the powder surface oxide composition as a function of the atomizing medium is not clear. This work summarizes a detailed surface characterization of three 316L powders, produced using water atomization (WA), vacuum melting inert gas atomization (VIGA), and nitrogen atomization (GA). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy analyses were combined to characterize the surface state of the powders. The results showed that the surface oxides consisted of a thin (~4 nm) iron oxide (Fe2O3) layer with particulate oxide phases rich in Cr, Mn, and Si, with a varying composition. XPS analysis combined with depth-profiling showed that the VIGA powder had the lowest surface coverage of particulate compounds, followed by the GA powder, whereas the WA powder had the largest fraction of particulate surface oxides. The composition of the oxides was evaluated based on the XPS analysis of the oxide standards. Effects of Ar sputtering on the peak positions of the oxide standards were evaluated with the aim of providing an accurate analysis of the oxide characteristics at different etch depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号