首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 640 毫秒
1.
田正旺 《山西建筑》2010,36(29):150-151
分析了水泥掺量、水胶比和膨润土与黏土掺量对塑性混凝土无侧限抗压强度的影响,试验结果表明,塑性混凝土无侧限抗压强度随水泥掺量的增加而增大;随着水胶比的增加,强度有明显减小;随着膨润土与黏土的掺入比例增加,塑性混凝土的抗压强度有一定降低。  相似文献   

2.
《Planning》2015,(9)
为解决传统固化剂难以有效加固含水率高、有机质含量高、孔隙比大的东南沿海地区软土的问题,以固化土7d无侧限抗压强度为评价指标,通过单掺试验和正交试验研究水泥、水玻璃、玻璃纤维、高效减水剂FDN等对有机质土的固化效果。结果表明:水泥对有机质土固化影响最为显著,水玻璃影响次之,玻璃纤维再次之,高效减水剂FDN影响最小;适用于有机质土固化剂的最优配比为水泥掺量18%,玻璃纤维掺量2%,水玻璃掺量8%,高效减水剂FDN掺量1.5%,氢氧化钠0.6%,三乙醇胺0.04%。  相似文献   

3.
水泥土无侧限抗压强度的试验研究   总被引:1,自引:0,他引:1  
向前 《山西建筑》2010,36(18):111-112
分析了土的塑性、水泥和外加剂掺量对水泥无侧限抗压强度的影响。试验结果表明,水泥土无侧限抗压强度随土的塑限增大而先减小后增大,随着水泥掺量的增加,水泥土无侧限抗压强度有明显增长,掺了减水剂的水泥土的7 d强度有所增加,但以后强度几乎没有增长。  相似文献   

4.
现场施工过程中,往往需要对水泥固化土的无侧限抗压强度进行快速检测。针对目前水泥固化黏土无侧限抗压强度检测中存在的操作不简便、试验时间长、测试费用高等缺点,提出通过水泥土硬度估计强度的方法,对现场水泥土强度进行快速检测。本文以上海地区黏性土为研究对象,对上海地区水泥固化黏土强度与硬度的相关性进行了试验研究;探讨了加固土的硬度与养护时间、水泥掺量以及强度与硬度之间的关系。试验结果表明:上海黏土水泥土强度和硬度呈正比相关,对数坐标下的强度和硬度有着形如lnqu=ap+b的线性关系。养护初期,硬度增长速度大于水泥土强度增长速度。养护后期,强度增速大于硬度增速。  相似文献   

5.
以福建省宁德市连城路(疏港路—学院路段)道路工程项目为依托,采用无侧限抗压强度试验系统研究了不同养护条件、不同水泥掺量、不同养护龄期对水泥土强度的影响。结果表明:当水泥掺量和养护龄期均相同时,试验箱中水泥土的无侧限抗压强度均小于标养箱;在同一水泥掺量下,试验箱和标养箱中水泥土的无侧限抗压强度均与养护龄期成正相关,即随着养护龄期的增加而增长,但其强度增长幅度随着养护龄期的增加逐渐降低;同一养护龄期下,不同养护条件下水泥土的无侧限抗压强度均随着水泥掺量的增加而增长,且试验箱和标养箱中试样的强度差值随着水泥掺量的增加逐渐加快。  相似文献   

6.
通过室内试验,研究广州市南沙地区软土采用水泥和粉煤灰加固力学特性。考虑水灰比、水泥粉煤灰混合固化剂掺量、粉煤灰掺量的变化对固化土无侧限抗压强度的影响,建立固化土强度-龄期一系列函数公式。研究显示:水泥起到提高固化土强度的主要作用,粉煤灰的掺量应有所限制;对于不同的混合固化剂配比,有各自的最佳水灰比。水灰比小于0.5,加大混合固化剂掺量不能显著提高固化土强度。广州南沙软土采用水泥粉煤灰搅拌桩加固,混合固化剂掺量取15%~18%,粉煤灰掺量取20%~30%,水灰比取0.53左右,比较合理。  相似文献   

7.
基于膨胀剂抵消混凝土自收缩的机理,通过减小原材料粒径的方法,利用超细水泥、细颗粒黏土、天然砂、卵石、减水剂、膨胀剂等原料,研制出混凝土无侧限抗压强度和防水抗渗性能俱佳的地下室防水材料。其最佳配比为:水灰比0.5,天然砂掺量25%,卵石掺量30%,细颗粒黏土与超细水泥质量比0.8,膨胀剂掺量9%,减水剂掺量0.225%。该防水材料应用于某地下室2年基本未出现渗水。  相似文献   

8.
通过正交试验研究硅酸盐水泥掺量、建筑废弃物再生集料掺量、水灰比3个因素对建筑废弃物再生集料泡沫混凝土强度的影响。结果表明,影响建筑废弃集料泡沫混凝土28 d无侧限抗压强度的主次顺序为:建筑废弃物再生集料掺量硅酸盐水泥掺量水灰比,最佳配合比为水泥405 kg/m~3,建筑废弃物再生集料607.5 kg/m~3,水243 kg/m~3,聚羧酸高效减水剂1.22 kg/m~3,其28 d无侧限抗压强度为4.85 MPa,流动度为170 mm,性能符合CJJ/T 177—2012《气泡混合轻质土填筑工程技术规程》的要求。  相似文献   

9.
用低掺量水泥加固3种不同的土进行室内试验研究,测试了不同Ca(OH)2掺量及不同龄期下3种水泥土的无侧限抗压强度。分析了随Ca(OH)2掺量的增加,不同龄期的3种水泥土无侧限抗压强度变化规律及原因。试验结果表明:水泥红粘土强度随Ca(OH)2掺量的增加提高最为明显,粉质粘土次之,砂土最弱。分析原因是由于土体的细度对水泥土强度影响较大。土体越细,土体中粘土矿物越多, Ca(OH)2掺量的增加促进了更多的离子交换作用和火山灰作用的发生,从而提高了水泥土强度。试验所用的3种土中红粘土最细,所以水泥红粘土强度随Ca(OH)2掺量的增加提高最为明显。  相似文献   

10.
基于粤港澳大湾区的发展,东莞滨海湾软土由于其具有高有机质、高含水率、高压缩性和变形稳定时间过长等较差的工程性质,极大限制了区域的建设能力,因此需要使用水泥来固化软土从而提高其工程物理力学性质。以不同养护龄期和不同水泥掺量为变量探究固化软土的强度特性,养护28 d后的试样分别浸泡7d、14 d、28 d后的无侧限抗压强度研究其劣化特性,试验结果表明:随着养护时间和水泥掺量的增加,东莞滨海湾水泥固化土的强度也会随之提高,最高提升83.6%;试样强度在浸泡7 d后先下降,随后在14 d和28 d出现上升的趋势,且浸泡28 d的强度大于养护28 d的强度。  相似文献   

11.
Soft clay deposits are highly plastic, normally consolidated fine grained soils characterized by their low inherent shear strength. The mixing of soft clays with cement as a chemical stabilizer has become a well-known stabilization technique. The resulting strength of the clay–cement mix is controlled by different factors, but mainly the water to cement ratio, the cement content, and the curing conditions. It is crucial to develop a clear understanding of the changes in engineering behavior of the clay–cement mix that result from changes in controlling factors. A phase diagram was established to define the initial conditions of the mass–volume relationships of air, cement, clay, and water of a typical clay–cement mix. This phase diagram was then used to determine the total dry density, void ratio, and specific gravity of the clay–cement mix as a function of the cement content and water to cement ratio. The main objective of this work was to develop generalized trends for the geotechnical properties of clay–cement mixes. These trends were evaluated based on unconfined compressive strength as well as consistency tests carried out on soft clay samples before and after mixing with cement and at different curing times. A reduction in the plasticity index (PI) of 16 % and an increase in the unconfined shear strength of more than 200 kPa were obtained from the addition of 15 % cement. The reduction in the PI of the clay–cement mix was found to be an efficient tool to represent the improvement in the strength of the clay after mixing with cement.  相似文献   

12.
南阳中膨胀土水泥改性的室内试验研究   总被引:1,自引:0,他引:1  
取南水北调中线工程南阳段自由膨胀率77%的中膨胀土,开展了一系列不同水泥掺灰率和不同龄期下,压实度为98%试样的物理力学特性试验。通过对素膨胀土与改性膨胀土的胀缩性、界限含水率、级配及无侧限抗压强度的对比,揭示了掺灰率及养护龄期对膨胀土改性效果的影响。试验结果表明:(1)随掺灰率的增加,改性膨胀土的胀缩性指标及反映黏土亲水性的液限和塑性指数均降低、胶粒含量减小、级配曲线随趋于平缓、无侧限抗压强度和弹性模量增加;合理的掺灰率应取6%;(2)随养护龄期的增加,胀缩性指标、液限、塑性指数、胶粒含量减小,无侧限抗压强度和弹性模量则增大。  相似文献   

13.
Fly ash and biomass ash have been widely accepted as waste materials substituting Portland cement. In this paper, the role of these two ashes on the strength development of cement admixed low-swelling Bangkok clay is investigated via unconfined compressive (UC) test and thermal gravity (TG) analysis. Fly ash and biomass ash are dispersing materials, increasing the reactive surface of the cement grains. The pozzolanic reaction does not play any significant role on the strength development with time since the amount of Ca(OH)2 is insufficient to react with the ashes. The contribution of the dispersing effect to the strength development is regarded akin as an addition of cement. Based on this premise, the clay–water/cement ratio hypothesis for blended cement admixed clay is proposed for analyzing and assessing the strength development. Even with the difference in water content, cement content and ash content, the blended cement admixed clay samples having the same clay–water/cement ratio, wc/C possess practically the same stress–strain response and strength. The relationship among strength, clay–water/cement ratio, and curing time for the blended cement admixed Bangkok clay is finally developed and verified. It is useful to assess the strength at any curing time wherein water content, cement content, and ash content vary over a wide range by using the test result of a single laboratory trial. For the economic mix design (the most effective dispersing effect), an addition of 25% ash is recommended. It can save on the input of cement up to 15.8%.  相似文献   

14.
水泥和粉煤灰加固红黏土的试验研究   总被引:4,自引:0,他引:4  
单纯用水泥加固某些红黏土地基会存在一些问题,因此考虑采用水泥外加粉煤灰加固红黏土。通过室内试验,测试了具有不同水泥及粉煤灰掺入比、不同龄期的红黏土试块的抗压强度,分析并探讨了水泥和粉煤灰加固红黏土的机理。研究结果表明,固化土试块强度随水泥、粉煤灰掺入比的增大、龄期的延长而提高,并且粉煤灰和水泥对试块早期、中期和后期强度的影响是不同的。  相似文献   

15.
为解决贵州红黏土路基工程中由水稳性差、强度不足、变形较大以及胀缩性明显等引起的一系列公路病害问题,本文以贵州某公路路基原状红黏土作为试验原料,通过在天然红黏土中掺入不同含量的固化剂开展室内试验,研究了改性红黏土的水理性质与力学强度特性,并结合现场试验路段的施工和检测,对红黏土复合材料进行了评价.结果表明:随着固化剂的增...  相似文献   

16.
以上海奉贤区粉质粘土与水泥混合后的加固体为研究对象,对其进行了多组无侧限抗压强度试验,通过对试验数据的整理分析,得出了以下两方面的结果:不同掺量下无侧限抗压强度与龄期的关系;不同龄期的无侧限抗压强度与掺量的关系。  相似文献   

17.
为探索磷石膏大掺量、规模化、资源化利用路径,分别以自制固化剂和水泥为胶凝材制备大掺量磷石膏路基填料,开展大掺量磷石膏混合料的击实试验、无侧限抗压强度试验及疏水改性试验,分析大掺量磷石膏与自制固化剂和水泥的适配性、击实特性、强度特性、耐水性能。结果表明,采用水泥或自制固化剂改性磷石膏击实曲线呈单峰变化趋势,且含水率偏低时对大掺量磷石膏混合料的干密度影响较小;相同配比时,固化剂体系大掺量磷石膏混合料7d无侧限抗压强度是水泥体系的1.5倍以上,磷尾砂与自制固化剂的适配性优于黏土,且配比为90%磷石膏+10%固化剂的大掺量磷石膏混合料7d无侧限抗压强度度达3.4MPa,经疏水改性后强度提升至4.2MPa,疏水剂与自制固化剂的复配较好地改善了磷石膏自身亲水特性,提升了其水稳性能。  相似文献   

18.
为研究高掺量磷石膏稳定红黏土胀缩变形特性,改变以往磷石膏和水泥作为外掺固化剂改良土的研究思路,把磷石膏和红黏土作为主要原材料,以水泥含量5%,磷石膏和红黏土比例1∶1、1∶2、1∶3的配比制作试样,研究不同含水率、不同压实度下素红黏土和磷石膏稳定红黏土胀缩变形特性。结果表明:素红黏土绝对膨胀率在0~3 h线性增加,3 h后基本达到稳定;磷石膏稳定红黏土绝对膨胀率在0~3 h缓慢增加,变形量小于素红黏土,3 h后变形量持续增加,在2 d左右超过素红黏土,表现出更大的膨胀性,膨胀稳定时间为10 d左右;磷石膏水泥稳定红黏土混合料绝对膨胀率相较于素红黏土膨胀变形具有滞后作用,磷石膏和水泥的掺入可以有效降低混合料前期的膨胀变形,且同一含水率条件下,磷石膏掺量越低,绝对膨胀率越大;磷石膏稳定红黏土初始含水率越低,绝对膨胀率越大;磷石膏稳定红黏土和素红黏土线缩率随含水率、压实度的增大而增大;水平收缩率随含水率的增大而增大,随压实度的增大而减小;相同含水率和压实度下,磷石膏水泥稳定红黏土线缩率大于素红黏土,水平收缩率小于素红黏土;高掺量磷石膏稳定红黏土7 d龄期无侧限抗压强度能够满足规范对二级及以下...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号